吉林省長春市吉大尚德校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
吉林省長春市吉大尚德校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
吉林省長春市吉大尚德校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
吉林省長春市吉大尚德校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
吉林省長春市吉大尚德校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

吉林省長春市吉大尚德校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.點(diǎn)A(-2,5)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)2.圖為一根圓柱形的空心鋼管,它的主視圖是()A. B. C. D.3.?dāng)?shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.34.如圖,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于點(diǎn)E,點(diǎn)D為AB的中點(diǎn),連接DE,則△BDE的周長是()A.3 B.4 C.5 D.65.下列二次根式中,與是同類二次根式的是()A. B. C. D.6.為了增強(qiáng)學(xué)生體質(zhì),學(xué)校發(fā)起評選“健步達(dá)人”活動,小明用計(jì)步器記錄自己一個(gè)月(30天)每天走的步數(shù),并繪制成如下統(tǒng)計(jì)表:步數(shù)(萬步)1.01.21.11.41.3天數(shù)335712在每天所走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.47.如圖,在矩形ABCD中,連接BD,點(diǎn)O是BD的中點(diǎn),若點(diǎn)M在AD邊上,連接MO并延長交BC邊于點(diǎn)M’,連接MB,DM’則圖中的全等三角形共有()A.3對 B.4對 C.5對 D.6對8.用半徑為8的半圓圍成一個(gè)圓錐的側(cè)面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.89.如圖是由5個(gè)相同的正方體搭成的幾何體,其左視圖是()A. B.C. D.10.下列命題正確的是()A.對角線相等的四邊形是平行四邊形B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形D.對角線互相垂直且相等的四邊形是正方形11.如圖,點(diǎn)E在△DBC的邊DB上,點(diǎn)A在△DBC內(nèi)部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結(jié)論:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正確的是()A.①②③④ B.②④ C.①②③ D.①③④12.下列計(jì)算正確的是()A.a(chǎn)2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a(chǎn)2?a3=a6 D.a(chǎn)8÷a2=a4二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.矩形ABCD中,AB=8,AD=6,E為BC邊上一點(diǎn),將△ABE沿著AE翻折,點(diǎn)B落在點(diǎn)F處,當(dāng)△EFC為直角三角形時(shí)BE=_____.14.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.15.如圖,將矩形ABCD繞點(diǎn)C沿順時(shí)針方向旋轉(zhuǎn)90°到矩形A′B′CD′的位置,AB=2,AD=4,則陰影部分的面積為_____.16.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點(diǎn),四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比為_____.17.若一次函數(shù)y=﹣x+b(b為常數(shù))的圖象經(jīng)過點(diǎn)(1,2),則b的值為_____.18.方程的解是__________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB為⊙O的直徑,點(diǎn)E在⊙O上,C為的中點(diǎn),過點(diǎn)C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;(2)若AD=2,AC=,求AB的長.20.(6分)化簡:21.(6分)綜合與探究:如圖,已知在△ABC中,AB=AC,∠BAC=90°,點(diǎn)A在x軸上,點(diǎn)B在y軸上,點(diǎn)在二次函數(shù)的圖像上.(1)求二次函數(shù)的表達(dá)式;(2)求點(diǎn)A,B的坐標(biāo);(3)把△ABC沿x軸正方向平移,當(dāng)點(diǎn)B落在拋物線上時(shí),求△ABC掃過區(qū)域的面積.22.(8分)已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點(diǎn)E,點(diǎn)F在邊AB上,連接CF交線段BE于點(diǎn)G,CG2=GE?GD.求證:∠ACF=∠ABD;連接EF,求證:EF?CG=EG?CB.23.(8分)如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,M,N均在格點(diǎn)上,P為線段MN上的一個(gè)動點(diǎn)(1)MN的長等于_______,(2)當(dāng)點(diǎn)P在線段MN上運(yùn)動,且使PA2+PB2取得最小值時(shí),請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點(diǎn)P的位置,并簡要說明你是怎么畫的,(不要求證明)24.(10分)如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點(diǎn),作DE⊥AC,交AB的延長線于點(diǎn)F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區(qū)域的面積.(結(jié)果保留根號和π)25.(10分)如圖,AB是⊙O的直徑,點(diǎn)F,C是⊙O上兩點(diǎn),且,連接AC,AF,過點(diǎn)C作CD⊥AF交AF延長線于點(diǎn)D,垂足為D.(1)求證:CD是⊙O的切線;(2)若CD=2,求⊙O的半徑.

26.(12分)如圖所示,直線y=x+2與雙曲線y=相交于點(diǎn)A(2,n),與x軸交于點(diǎn)C.求雙曲線解析式;點(diǎn)P在x軸上,如果△ACP的面積為5,求點(diǎn)P的坐標(biāo).27.(12分)數(shù)學(xué)興趣小組為了解我校初三年級1800名學(xué)生的身體健康情況,從初三隨機(jī)抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.補(bǔ)全條形統(tǒng)計(jì)圖,并估計(jì)我校初三年級體重介于47kg至53kg的學(xué)生大約有多少名.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

根據(jù)平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對稱點(diǎn)是(-x,-y).【詳解】根據(jù)中心對稱的性質(zhì),得點(diǎn)P(?2,5)關(guān)于原點(diǎn)對稱點(diǎn)的點(diǎn)的坐標(biāo)是(2,?5).故選:B.【點(diǎn)睛】考查關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特征,平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對稱點(diǎn)是(-x,-y).2、B【解析】試題解析:從正面看是三個(gè)矩形,中間矩形的左右兩邊是虛線,故選B.3、A【解析】

眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點(diǎn)睛】本題為統(tǒng)計(jì)題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個(gè).4、C【解析】

根據(jù)等腰三角形的性質(zhì)可得BE=BC=2,再根據(jù)三角形中位線定理可求得BD、DE長,根據(jù)三角形周長公式即可求得答案.【詳解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中點(diǎn),∴BD=AB=,∴DE是△ABC的中位線,∴DE=AC=,∴△BDE的周長為BD+DE+BE=++2=5,故選C.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)、三角形中位線定理,熟練掌握三角形中位線定理是解題的關(guān)鍵.5、C【解析】

根據(jù)二次根式的性質(zhì)把各個(gè)二次根式化簡,根據(jù)同類二次根式的定義判斷即可.【詳解】A.|a|與不是同類二次根式;B.與不是同類二次根式;C.2與是同類二次根式;D.與不是同類二次根式.故選C.【點(diǎn)睛】本題考查了同類二次根式的定義,一般地,把幾個(gè)二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個(gè)二次根式叫做同類二次根式.6、B【解析】

在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,得到這組數(shù)據(jù)的眾數(shù);把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個(gè)數(shù)的平均數(shù)是中位數(shù).【詳解】在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,即眾數(shù)是1.1.要求一組數(shù)據(jù)的中位數(shù),把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個(gè)兩個(gè)數(shù)都是1.1,所以中位數(shù)是1.1.故選B.【點(diǎn)睛】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),在求中位數(shù)時(shí),首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個(gè)數(shù)字或中間兩個(gè)數(shù)字的平均數(shù)即為所求.7、D【解析】

根據(jù)矩形的對邊平行且相等及其對稱性,即可寫出圖中的全等三角形的對數(shù).【詳解】圖中圖中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故選D.【點(diǎn)睛】此題主要考查矩形的性質(zhì)及全等三角形的判定,解題的關(guān)鍵是熟知矩形的對稱性.8、A【解析】

由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【點(diǎn)睛】此題主要考查了圓錐側(cè)面展開扇形與底面圓之間的關(guān)系,圓錐的側(cè)面展開圖是一個(gè)扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關(guān)鍵是應(yīng)用半圓的弧長=圓錐的底面周長.9、A【解析】

根據(jù)三視圖的定義即可判斷.【詳解】根據(jù)立體圖可知該左視圖是底層有2個(gè)小正方形,第二層左邊有1個(gè)小正方形.故選A.【點(diǎn)睛】本題考查三視圖,解題的關(guān)鍵是根據(jù)立體圖的形狀作出三視圖,本題屬于基礎(chǔ)題型.10、C【解析】分析:根據(jù)平行四邊形、矩形、菱形、正方形的判定定理判斷即可.詳解:對角線互相平分的四邊形是平行四邊形,A錯(cuò)誤;對角線相等的平行四邊形是矩形,B錯(cuò)誤;對角線互相垂直的平行四邊形是菱形,C正確;對角線互相垂直且相等的平行四邊形是正方形;故選:C.點(diǎn)睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯(cuò)誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.11、A【解析】分析:只要證明△DAB≌△EAC,利用全等三角形的性質(zhì)即可一一判斷;詳解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正確,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正確,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正確,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正確,故選A.點(diǎn)睛:本題考查全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考選擇題中的壓軸題.12、B【解析】

解:A.a(chǎn)2+a2=2a2,故A錯(cuò)誤;C、a2a3=a5,故C錯(cuò)誤;D、a8÷a2=a6,故D錯(cuò)誤;本題選B.考點(diǎn):合同類型、同底數(shù)冪的乘法、同底數(shù)冪的除法、積的乘方二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、3或1【解析】

分當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)和當(dāng)點(diǎn)F落在AD邊上時(shí)兩種情況求BE得長即可.【詳解】當(dāng)△CEF為直角三角形時(shí),有兩種情況:當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖1所示.連結(jié)AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)F處,∴∠AFE=∠B=90°,當(dāng)△CEF為直角三角形時(shí),只能得到∠EFC=90°,∴點(diǎn)A、F、C共線,即∠B沿AE折疊,使點(diǎn)B落在對角線AC上的點(diǎn)F處,如圖,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,設(shè)BE=x,則EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②當(dāng)點(diǎn)F落在AD邊上時(shí),如圖2所示.此時(shí)ABEF為正方形,∴BE=AB=1.綜上所述,BE的長為3或1.故答案為3或1.【點(diǎn)睛】本題考查了矩形的性質(zhì)、圖形的折疊變換、勾股定理的應(yīng)用等知識點(diǎn),解題時(shí)要注意分情況討論.14、6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因?yàn)椤螧CD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.15、【解析】試題解析:連接∵四邊形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴陰影部分的面積是S=S扇形CEB′?S△CDE故答案為16、1:1【解析】

根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點(diǎn),∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【點(diǎn)睛】本題考查了矩形的性質(zhì)和判定,三角形的面積,主要考查學(xué)生的推理能力.17、3【解析】

把點(diǎn)(1,2)代入解析式解答即可.【詳解】解:把點(diǎn)(1,2)代入解析式y(tǒng)=-x+b,可得:2=-1+b,解得:b=3,故答案為3【點(diǎn)睛】本題考查的是一次函數(shù)的圖象點(diǎn)的關(guān)系,關(guān)鍵是把點(diǎn)(1,2)代入解析式解答.18、x=1【解析】

將方程兩邊平方后求解,注意檢驗(yàn).【詳解】將方程兩邊平方得x-3=4,移項(xiàng)得:x=1,代入原方程得=2,原方程成立,故方程=2的解是x=1.故本題答案為:x=1.【點(diǎn)睛】在解無理方程是最常用的方法是兩邊平方法及換元法,解得答案時(shí)一定要注意代入原方程檢驗(yàn).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析(2)3【解析】

(1)連接,由為的中點(diǎn),得到,等量代換得到,根據(jù)平行線的性質(zhì)得到,即可得到結(jié)論;(2)連接,由勾股定理得到,根據(jù)切割線定理得到,根據(jù)勾股定理得到,由圓周角定理得到,即可得到結(jié)論.【詳解】相切,連接,∵為的中點(diǎn),∴,∵,∴,∴,∴,∵,∴,∴直線與相切;方法:連接,∵,,∵,∴,∵是的切線,∴,∴,∴,∵為的中點(diǎn),∴,∵為的直徑,∴,∴.方法:∵,易得,∴,∴.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,切線的判定和性質(zhì),圓周角定理,勾股定理,平行線的性質(zhì),切割線定理,熟練掌握各定理是解題的關(guān)鍵.20、x+2【解析】

先把括號里的分式通分,化簡,再計(jì)算除法.【詳解】解:原式==x+2【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對分式的化簡的應(yīng)用,掌握通分和約分是解題的關(guān)鍵.21、(1);(2);(3).【解析】

(1)將點(diǎn)代入二次函數(shù)解析式即可;(2)過點(diǎn)作軸,證明即可得到即可得出點(diǎn)A,B的坐標(biāo);(3)設(shè)點(diǎn)的坐標(biāo)為,解方程得出四邊形為平行四邊形,求出AC,AB的值,通過掃過區(qū)域的面積=代入計(jì)算即可.【詳解】解:(1)∵點(diǎn)在二次函數(shù)的圖象上,.解方程,得∴二次函數(shù)的表達(dá)式為.(2)如圖1,過點(diǎn)作軸,垂足為..,.在和中,∵,.∵點(diǎn)的坐標(biāo)為,..(3)如圖2,把沿軸正方向平移,當(dāng)點(diǎn)落在拋物線上點(diǎn)處時(shí),設(shè)點(diǎn)的坐標(biāo)為.解方程得:(舍去)或由平移的性質(zhì)知,且,∴四邊形為平行四邊形,.掃過區(qū)域的面積==.【點(diǎn)睛】本題考查了二次函數(shù)與幾何綜合問題,涉及全等三角形的判定與性質(zhì),平行四邊形的性質(zhì)與判定,勾股定理解直角三角形,解題的關(guān)鍵是靈活運(yùn)用二次函數(shù)的性質(zhì)與幾何的性質(zhì).22、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)先根據(jù)CG2=GE?GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根據(jù)AB∥CD得出∠ABD=∠BDC,故可得出結(jié)論;(2)先根據(jù)∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,進(jìn)而可得出結(jié)論.試題解析:(1)∵CG2=GE?GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FE?CG=EG?CB.考點(diǎn):相似三角形的判定與性質(zhì).23、(1);(2)見解析.【解析】

(1)根據(jù)勾股定理即可得到結(jié)論;

(2)取格點(diǎn)S,T,得點(diǎn)R;取格點(diǎn)E,F(xiàn),得點(diǎn)G;連接GR交MN于點(diǎn)P即可得到結(jié)果.【詳解】(1);(2)取格點(diǎn)S,T,得點(diǎn)R;取格點(diǎn)E,F(xiàn),得點(diǎn)G;連接GR交MN于點(diǎn)P【點(diǎn)睛】本題考查了作圖-應(yīng)用與設(shè)計(jì)作圖,軸對稱-最短距離問題,正確的作出圖形是解題的關(guān)鍵.24、(1)證明見解析(2)﹣6π【解析】

(1)直接利用切線的判定方法結(jié)合圓心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S陰影=S△AED﹣S扇形COD,求出答案.【詳解】(1)證明:連接OD,∵D為弧BC的中點(diǎn),∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF為半圓O的切線;(2)解:連接OC與CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC為等邊三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=6,∴OD=DF?tan30°=6,在Rt△AED中,DA=6,∠CAD=30°,∴DE=DA?sin30°=3,EA=DA?cos30°=9,∵∠COD=180°﹣∠AOC﹣∠DOF=60°,由CO=DO,∴△COD是等邊三角形,∴∠OCD=60°,∴∠DCO=∠AOC=60°,∴CD∥AB,故S△ACD=S△COD,∴S陰影=S△AED﹣S扇形COD==.【點(diǎn)睛】此題主要考查了切線的判定,圓周角定理,等邊三角形的判定與性質(zhì),解直角三角形及扇形面積求法等知識,得出S△ACD=S△COD是解題關(guān)鍵.25、(2)1【解析】試題分析:(1)連結(jié)OC,由=,根據(jù)圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以O(shè)C⊥CD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;(2)連結(jié)BC,由AB為直徑得∠ACB=90°,由==,得∠BOC=60°,則∠BAC=30

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論