




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
湖南省長沙市雨花區(qū)雅禮教育集團重點中學2024年中考數(shù)學最后一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米2.如圖,已知△ABC,AB=AC,將△ABC沿邊BC翻轉(zhuǎn),得到的△DBC與原△ABC拼成四邊形ABDC,則能直接判定四邊形ABDC是菱形的依據(jù)是()A.四條邊相等的四邊形是菱形 B.一組鄰邊相等的平行四邊形是菱形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直平分的四邊形是菱形3.在一次中學生田徑運動會上,參加跳遠的名運動員的成績?nèi)缦卤硭?成績(米)人數(shù)則這名運動員成績的中位數(shù)、眾數(shù)分別是()A. B. C., D.4.如圖,剪兩張對邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個四邊形,則下列結(jié)論中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°5.人的頭發(fā)直徑約為0.00007m,這個數(shù)據(jù)用科學記數(shù)法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×1056.如圖,將△ABC沿DE,EF翻折,頂點A,B均落在點O處,且EA與EB重合于線段EO,若∠DOF=142°,則∠C的度數(shù)為()A.38° B.39° C.42° D.48°7.從一個邊長為3cm的大立方體挖去一個邊長為1cm的小立方體,得到的幾何體如圖所示,則該幾何體的左視圖正確的是()A. B. C. D.8.根據(jù)總書記在“一帶一路”國際合作高峰論壇開幕式上的演講,中國將在未來3年向參與“一帶一路”建設的發(fā)展中國家和國際組織提供60000000000元人民幣援助,建設更多民生項目,其中數(shù)據(jù)60000000000用科學記數(shù)法表示為()A.0.6×1010 B.0.6×1011 C.6×1010 D.6×10119.如圖,在正八邊形ABCDEFGH中,連接AC,AE,則的值是()A.1 B. C.2 D.10.點A(4,3)經(jīng)過某種圖形變化后得到點B(-3,4),這種圖形變化可以是()A.關(guān)于x軸對稱 B.關(guān)于y軸對稱C.繞原點逆時針旋轉(zhuǎn) D.繞原點順時針旋轉(zhuǎn)二、填空題(本大題共6個小題,每小題3分,共18分)11.某排水管的截面如圖,已知截面圓半徑OB=10cm,水面寬AB是16cm,則截面水深CD為_____.12.將一張長方形紙片按如圖所示的方式折疊,BD、BE為折痕,若∠ABE=20°,則∠DBC為_____度.13.計算(﹣3)+(﹣9)的結(jié)果為______.14.函數(shù)的自變量的取值范圍是.15.若方程x2﹣4x+1=0的兩根是x1,x2,則x1(1+x2)+x2的值為_____.16.如圖,△ABC中,AB=AC,以AC為斜邊作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分別是BC、AC的中點,則∠EDF等于__________°.三、解答題(共8題,共72分)17.(8分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.18.(8分)如圖,在△ABC中,CD⊥AB于點D,tanA=2cos∠BCD,(1)求證:BC=2AD;(2)若cosB=,AB=10,求CD的長.19.(8分)圖1是某市2009年4月5日至14日每天最低氣溫的折線統(tǒng)計圖.圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補全圖2中頻數(shù)分布直方圖;在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.請用扇形圖表示出這十天里溫度的分布情況.20.(8分)在平面直角坐標系中,已知拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0)三點.(1)求拋物線解析式;(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,△MOA的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出當m為何值時,S有最大值,這個最大值是多少?(3)若點Q是直線y=﹣x上的動點,過Q做y軸的平行線交拋物線于點P,判斷有幾個Q能使以點P,Q,B,O為頂點的四邊形是平行四邊形的點,直接寫出相應的點Q的坐標.21.(8分)下表給出A、B、C三種上寬帶網(wǎng)的收費方式:收費方式月使用費/元包時上網(wǎng)時間/h超時費/(元/min)A30250.05B50500.05C120不限時設上網(wǎng)時間為t小時.(I)根據(jù)題意,填寫下表:月費/元上網(wǎng)時間/h超時費/(元)總費用/(元)方式A3040方式B50100(II)設選擇方式A方案的費用為y1元,選擇方式B方案的費用為y2元,分別寫出y1、y2與t的數(shù)量關(guān)系式;(III)當75<t<100時,你認為選用A、B、C哪種計費方式省錢(直接寫出結(jié)果即可)?22.(10分)如圖,已知拋物線與軸交于兩點(A點在B點的左邊),與軸交于點.(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點在拋物線上,點在拋物線的對稱軸上,若以為邊,以點、、、Q為頂點的四邊形是平行四邊形,求點的坐標;(3)如圖2,過點作直線的平行線交拋物線于另一點,交軸于點,若﹕=1﹕1.求的值.23.(12分)若兩個不重合的二次函數(shù)圖象關(guān)于軸對稱,則稱這兩個二次函數(shù)為“關(guān)于軸對稱的二次函數(shù)”.(1)請寫出兩個“關(guān)于軸對稱的二次函數(shù)”;(2)已知兩個二次函數(shù)和是“關(guān)于軸對稱的二次函數(shù)”,求函數(shù)的頂點坐標(用含的式子表示).24.如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.(1)求證:BC是⊙O的切線;(2)已知AD=3,CD=2,求BC的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點:解直角三角形的應用-仰角俯角問題.2、A【解析】
根據(jù)翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根據(jù)菱形的判定推出即可.【詳解】∵
將
△ABC
延底邊
BC
翻折得到
△DBC
,∴AB=BD
,
AC=CD
,∵AB=AC
,∴AB=BD=CD=AC
,∴
四邊形
ABDC
是菱形;故選A.【點睛】本題考查了菱形的判定方法:四邊都相等的四邊形是菱形;對角線互相垂直的平行四邊形是菱形;有一組鄰邊相等的平行四邊形是菱形.3、D【解析】
根據(jù)中位數(shù)、眾數(shù)的定義即可解決問題.【詳解】解:這些運動員成績的中位數(shù)、眾數(shù)分別是4.70,4.1.故選:D.【點睛】本題考查中位數(shù)、眾數(shù)的定義,解題的關(guān)鍵是記住中位數(shù)、眾數(shù)的定義,屬于中考基礎題.4、D【解析】
首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉(zhuǎn)換可得鄰邊相等,則四邊形為菱形.所以根據(jù)菱形的性質(zhì)進行判斷.【詳解】解:四邊形是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,,,四邊形是平行四邊形(對邊相互平行的四邊形是平行四邊形);過點分別作,邊上的高為,.則(兩紙條相同,紙條寬度相同);平行四邊形中,,即,,即.故正確;平行四邊形為菱形(鄰邊相等的平行四邊形是菱形).,(菱形的對角相等),故正確;,(平行四邊形的對邊相等),故正確;如果四邊形是矩形時,該等式成立.故不一定正確.故選:.【點睛】本題考查了菱形的判定與性質(zhì).注意:“鄰邊相等的平行四邊形是菱形”,而非“鄰邊相等的四邊形是菱形”.5、B【解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:0.00007m,這個數(shù)據(jù)用科學記數(shù)法表示7×10﹣1.故選:B.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.6、A【解析】分析:根據(jù)翻折的性質(zhì)得出∠A=∠DOE,∠B=∠FOE,進而得出∠DOF=∠A+∠B,利用三角形內(nèi)角和解答即可.詳解:∵將△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.故選A.點睛:本題考查了三角形內(nèi)角和定理、翻折的性質(zhì)等知識,解題的關(guān)鍵是靈活運用這些知識解決問題,學會把條件轉(zhuǎn)化的思想,屬于中考??碱}型.7、C【解析】
左視圖就是從物體的左邊往右邊看.小正方形應該在右上角,故B錯誤,看不到的線要用虛線,故A錯誤,大立方體的邊長為3cm,挖去的小立方體邊長為1cm,所以小正方形的邊長應該是大正方形,故D錯誤,所以C正確.故此題選C.8、C【解析】
解:將60000000000用科學記數(shù)法表示為:6×1.故選C.【點睛】本題考查科學記數(shù)法—表示較大的數(shù),掌握科學計數(shù)法的一般形式是解題關(guān)鍵.9、B【解析】
連接AG、GE、EC,易知四邊形ACEG為正方形,根據(jù)正方形的性質(zhì)即可求解.【詳解】解:連接AG、GE、EC,則四邊形ACEG為正方形,故=.故選:B.【點睛】本題考查了正多邊形的性質(zhì),正確作出輔助線是關(guān)鍵.10、C【解析】分析:根據(jù)旋轉(zhuǎn)的定義得到即可.詳解:因為點A(4,3)經(jīng)過某種圖形變化后得到點B(-3,4),所以點A繞原點逆時針旋轉(zhuǎn)90°得到點B,故選C.點睛:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩個圖形全等,對應點到旋轉(zhuǎn)中心的距離相等,對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.二、填空題(本大題共6個小題,每小題3分,共18分)11、4cm.【解析】
由題意知OD⊥AB,交AB于點C,由垂徑定理可得出BC的長,在Rt△OBC中,根據(jù)勾股定理求出OC的長,由CD=OD-OC即可得出結(jié)論.【詳解】由題意知OD⊥AB,交AB于點E,∵AB=16cm,∴BC=AB=×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴OC=(cm),∴CD=OD-OC=10-6=4(cm)故答案為4cm.【點睛】本題考查的是垂徑定理的應用,根據(jù)題意在直角三角形運用勾股定理列出方程是解答此題的關(guān)鍵.12、1【解析】解:根據(jù)翻折的性質(zhì)可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案為1.點睛:本題考查了角的計算,根據(jù)翻折變換的性質(zhì),得出三角形折疊以后的圖形和原圖形全等,對應的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解題的關(guān)鍵.13、-1【解析】試題分析:利用同號兩數(shù)相加的法則計算即可得原式=﹣(3+9)=﹣1,故答案為﹣1.14、x≠1【解析】該題考查分式方程的有關(guān)概念根據(jù)分式的分母不為0可得X-1≠0,即x≠1那么函數(shù)y=的自變量的取值范圍是x≠115、5【解析】由題意得,,.∴原式16、【解析】E、F分別是BC、AC的中點.,∠CAB=26°又∠CAD=26°!三、解答題(共8題,共72分)17、(1)見解析;(2)2π.【解析】
證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【點睛】本題考查了切線的判定和性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.運用切線的性質(zhì)來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.也考查了弧長公式.18、(1)證明見解析;(2)CD=2.【解析】
(1)根據(jù)三角函數(shù)的概念可知tanA=,cos∠BCD=,根據(jù)tanA=2cos∠BCD即可得結(jié)論;(2)由∠B的余弦值和(1)的結(jié)論即可求得BD,利用勾股定理求得CD即可.【詳解】(1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,∴=2·,∴BC=2AD.(2)∵cosB==,BC=2AD,∴=.∵AB=10,∴AD=×10=4,BD=10-4=6,∴BC=8,∴CD==2.【點睛】本題考查了直角三角形中的有關(guān)問題,主要考查了勾股定理,三角函數(shù)的有關(guān)計算.熟練掌握三角函數(shù)的概念是解題關(guān)鍵.19、(1)作圖見解析;(2)7,7.5,2.8;(3)見解析.【解析】
(1)根據(jù)圖1找出8、9、10℃的天數(shù),然后補全統(tǒng)計圖即可;(2)根據(jù)眾數(shù)的定義,找出出現(xiàn)頻率最高的溫度;按照從低到高排列,求出第5、6兩個溫度的平均數(shù)即為中位數(shù);先求出平均數(shù),再根據(jù)方差的定義列式進行計算即可得解;(3)求出7、8、9、10、11℃的天數(shù)在扇形統(tǒng)計圖中所占的度數(shù),然后作出扇形統(tǒng)計圖即可.【詳解】(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,補全統(tǒng)計圖如圖;(2)根據(jù)條形統(tǒng)計圖,7℃出現(xiàn)的頻率最高,為3天,所以,眾數(shù)是7;按照溫度從小到大的順序排列,第5個溫度為7℃,第6個溫度為8℃,所以,中位數(shù)為(7+8)=7.5;平均數(shù)為(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;(3)6℃的度數(shù),×360°=72°,7℃的度數(shù),×360°=108°,8℃的度數(shù),×360°=72°,10℃的度數(shù),×360°=72°,11℃的度數(shù),×360°=36°,作出扇形統(tǒng)計圖如圖所示.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.同時考查中位數(shù)、眾數(shù)的求法:給定n個數(shù)據(jù),按從小到大排序,如果n為奇數(shù),位于中間的那個數(shù)就是中位數(shù);如果n為偶數(shù),位于中間兩個數(shù)的平均數(shù)就是中位數(shù).任何一組數(shù)據(jù),都一定存在中位數(shù)的,但中位數(shù)不一定是這組數(shù)據(jù)量的數(shù).給定一組數(shù)據(jù),出現(xiàn)次數(shù)最多的那個數(shù),稱為這組數(shù)據(jù)的眾數(shù).20、(1)y=x2+x﹣4;(2)S關(guān)于m的函數(shù)關(guān)系式為S=﹣m2﹣2m+8,當m=﹣1時,S有最大值9;(3)Q坐標為(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)時,使點P,Q,B,O為頂點的四邊形是平行四邊形.【解析】
(1)設拋物線解析式為y=ax2+bx+c,然后把點A、B、C的坐標代入函數(shù)解析式,利用待定系數(shù)法求解即可;(2)利用拋物線的解析式表示出點M的縱坐標,從而得到點M到x軸的距離,然后根據(jù)三角形面積公式表示并整理即可得解,根據(jù)拋物線的性質(zhì)求出第三象限內(nèi)二次函數(shù)的最值,然后即可得解;(3)利用直線與拋物線的解析式表示出點P、Q的坐標,然后求出PQ的長度,再根據(jù)平行四邊形的對邊相等列出算式,然后解關(guān)于x的一元二次方程即可得解.【詳解】解:(1)設拋物線解析式為y=ax2+bx+c,∵拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0),∴,解得,∴拋物線解析式為y=x2+x﹣4;(2)∵點M的橫坐標為m,∴點M的縱坐標為m2+m﹣4,又∵A(﹣4,0),∴AO=0﹣(﹣4)=4,∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,點M為第三象限內(nèi)拋物線上一動點,∴當m=﹣1時,S有最大值,最大值為S=9;故答案為S關(guān)于m的函數(shù)關(guān)系式為S=﹣m2﹣2m+8,當m=﹣1時,S有最大值9;(3)∵點Q是直線y=﹣x上的動點,∴設點Q的坐標為(a,﹣a),∵點P在拋物線上,且PQ∥y軸,∴點P的坐標為(a,a2+a﹣4),∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以點P,Q,B,O為頂點的四邊形是平行四邊形,∴|PQ|=OB,即|﹣a2﹣2a+4|=4,①﹣a2﹣2a+4=4時,整理得,a2+4a=0,解得a=0(舍去)或a=﹣4,﹣a=4,所以點Q坐標為(﹣4,4),②﹣a2﹣2a+4=﹣4時,整理得,a2+4a﹣16=0,解得a=﹣2±2,所以點Q的坐標為(﹣2+2,2﹣2)或(﹣2﹣2,2+2),綜上所述,Q坐標為(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)時,使點P,Q,B,O為頂點的四邊形是平行四邊形.【點睛】本題是對二次函數(shù)的綜合考查有待定系數(shù)法求二次函數(shù)解析式,三角形的面積,二次函數(shù)的最值問題,平行四邊形的對邊相等的性質(zhì),平面直角坐標系中兩點間的距離的表示,綜合性較強,但難度不大,仔細分析便不難求解.21、(I)見解析;(II)見解析;(III)見解析.【解析】
(I)根據(jù)兩種方式的收費標準分別計算,填表即可;(II)根據(jù)表中給出A,B兩種上寬帶網(wǎng)的收費方式,分別寫出y1、y2與t的數(shù)量關(guān)系式即可;(III)計算出三種方式在此取值范圍的收費情況,然后比較即可得出答案.【詳解】(I)當t=40h時,方式A超時費:0.05×60(40﹣25)=45,總費用:30+45=75,當t=100h時,方式B超時費:0.05×60(100﹣50)=150,總費用:50+150=200,填表如下:月費/元上網(wǎng)時間/h超時費/(元)總費用/(元)方式A30404575方式B50100150200(II)當0≤t≤25時,y1=30,當t>25時,y1=30+0.05×60(t﹣25)=3t﹣45,所以y1=;當0≤t≤50時,y2=50,當t>50時,y2=50+0.05×60(t﹣50)=3t﹣100,所以y2=;(III)當75<t<100時,選用C種計費方式省錢.理由如下:當75<t<100時,y1=3t﹣45,y2=3t﹣100,y3=120,當t=75時,y1=180,y2=125,y3=120,所以當75<t<100時,選用C種計費方式省錢.【點睛】本題考查了一次函數(shù)的應用,解答時理解三種上寬帶網(wǎng)的收費標準進而求出函數(shù)的解析式是解題的關(guān)鍵.22、(1);(2)和;(3)【解析】
(1)設,,再根據(jù)根與系數(shù)的關(guān)系得到,根據(jù)勾股定理得到:、,根據(jù)列出方程,解方程即可;(2)求出A、B坐標,設出點Q坐標,利用平行四邊形的性質(zhì),分類討論點P坐標,利用全等的性質(zhì)得出P點的橫坐標后,分別代入拋物線解析式,求出P點坐標;(3)過點作DH⊥軸于點,由::,可得::.設,可得點坐標為,可得.設點坐標為.可證△∽△,利用相似性質(zhì)列出方程整理可得到①,將代入拋物線上,可得②,聯(lián)立①②解方程組,即可解答.【詳解】解:設,,則是方程的兩根,∴.∵已知拋物線與軸交于點.∴在△中:,在△中:,∵△為直角三角形,由題意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令則,∴,∴.①以為邊,以點、、、Q為頂點的四邊形是四邊形時,設拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教部編版(2024)九年級下冊第六單元寫作 有創(chuàng)意地表達教案配套
- 采購合同風險咨詢重點基礎知識點
- 船舶貨物偷竊提貨不著險重點基礎知識點
- 馬原課程工匠精神
- 志愿者協(xié)議書
- 廣告居間合同范例二零二五年
- 二零二五裝修垃圾押金協(xié)議書
- 試用期的勞動合同二零二五年
- 二零二五版借款合同范文摘要精簡
- 二零二五全新房產(chǎn)買賣意向協(xié)議
- 期中測試卷(1-5單元)(試題)(含答案)-2024-2025學年二年級下冊數(shù)學青島版
- 2025屆北京市順義區(qū)高三下學期一模英語試題(原卷版+解析版)
- 人工智能技術(shù)與知識產(chǎn)權(quán)保護
- 2025屆高三湖北省十一校第二次聯(lián)考英語試卷(含答案詳解)
- 信息技術(shù)與小學教育教學融合
- 產(chǎn)品設計研發(fā)費用統(tǒng)計表
- 2025屆廣東省深圳市高三年級第一次調(diào)研考試歷史試題
- 2023數(shù)據(jù)中心節(jié)能改造實踐案例
- 政治-湖南省長郡二十校聯(lián)盟2025屆新高考教學教研聯(lián)盟高三第一次聯(lián)考(長郡二十校一聯(lián))試題和答案
- 骨干教師培訓與示范課實施計劃
- 《建筑工程施工索賠與應對策略》課件
評論
0/150
提交評論