版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年山東省臨沂市臨沭縣一中高三下學(xué)期聯(lián)考數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則的值等于()A. B. C. D.2.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.43.若函數(shù),在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則實數(shù)的取值范圍是()A. B. C. D.4.已知拋物線的焦點為,準(zhǔn)線為,是上一點,是直線與拋物線的一個交點,若,則()A. B.3 C. D.25.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-36.五名志愿者到三個不同的單位去進(jìn)行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.7.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.8.下列不等式正確的是()A. B.C. D.9.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.9810.設(shè)全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}11.在聲學(xué)中,聲強(qiáng)級(單位:)由公式給出,其中為聲強(qiáng)(單位:).,,那么()A. B. C. D.12.已知中內(nèi)角所對應(yīng)的邊依次為,若,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,,若,則______.14.已知雙曲線C:()的左、右焦點為,,為雙曲線C上一點,且,若線段與雙曲線C交于另一點A,則的面積為______.15.已知橢圓與雙曲線(,)有相同的焦點,其左、右焦點分別為、,若橢圓與雙曲線在第一象限內(nèi)的交點為,且,則雙曲線的離心率為__________.16.利用等面積法可以推導(dǎo)出在邊長為a的正三角形內(nèi)任意一點到三邊的距離之和為定值,類比上述結(jié)論,利用等體積法進(jìn)行推導(dǎo),在棱長為a的正四面體內(nèi)任意一點到四個面的距離之和也為定值,則這個定值是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當(dāng)時,證明:對任意恒成立.18.(12分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.19.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若恒成立,求的取值范圍.20.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.21.(12分)設(shè)等比數(shù)列的前項和為,若(Ⅰ)求數(shù)列的通項公式;(Ⅱ)在和之間插入個實數(shù),使得這個數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項和為,求證:.22.(10分)已知函數(shù).(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由余弦公式的二倍角可得,,再由誘導(dǎo)公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學(xué)生對二倍角公式的應(yīng)用,要求學(xué)生熟練掌握三角函數(shù)中的誘導(dǎo)公式,屬于簡單題2、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。3、D【解析】
利用導(dǎo)數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個實數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當(dāng)、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.4、D【解析】
根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設(shè)與軸的交點為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點睛】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.5、D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)和定點P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點A,B的坐標(biāo)分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關(guān)鍵有兩個:一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-26、D【解析】
三個單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應(yīng)用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.7、C【解析】
設(shè)過點作圓的切線的切點為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設(shè)過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計算能力,屬于中檔題.8、D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、C【解析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細(xì)心計算即可,屬于基礎(chǔ)題.10、C【解析】
解一元二次不等式求得集合,由此求得【詳解】由,解得或.因為或,所以.故選:C【點睛】本小題主要考查一元二次不等式的解法,考查集合補(bǔ)集的概念和運算,屬于基礎(chǔ)題.11、D【解析】
由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當(dāng)時,,∴,當(dāng)時,,∴,∴,故選:D.【點睛】本小題主要考查對數(shù)運算,屬于基礎(chǔ)題.12、A【解析】
由余弦定理可得,結(jié)合可得a,b,再利用面積公式計算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.【點睛】本題考查利用余弦定理解三角形,考查學(xué)生的基本計算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
由向量垂直得向量的數(shù)量積為0,根據(jù)數(shù)量積的坐標(biāo)運算可得結(jié)論.【詳解】由已知,∵,∴,.故答案為:-1.【點睛】本題考查向量垂直的坐標(biāo)運算.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.14、【解析】
由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點A坐標(biāo),借助,即可解得所求.【詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,,所以點A坐標(biāo)為,所以.【點睛】本題主要考查直線與雙曲線的位置關(guān)系,考查雙曲線方程的求解,考查求三角形面積,考查學(xué)生的計算能力,難度較難.15、【解析】
先根據(jù)橢圓得出焦距,結(jié)合橢圓的定義求出,結(jié)合雙曲線的定義求出雙曲線的實半軸,最后利用離心率的公式求出離心率即可.【詳解】解:因為橢圓,則焦點為,又因為橢圓與雙曲線(,)有相同的焦點,橢圓與雙曲線在第一象限內(nèi)的交點為,且,在橢圓中:由橢圓的定義:在雙曲線中:,所以雙曲線的實軸長為:,實半軸為則雙曲線的離心率為:.故答案為:【點睛】本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問題.16、【解析】
計算正四面體的高,并計算該正四面體的體積,利用等體積法,可得結(jié)果.【詳解】作平面,為的重心如圖則,所以設(shè)正四面體內(nèi)任意一點到四個面的距離之和為則故答案為:【點睛】本題考查類比推理的應(yīng)用,還考查等體積法,考驗理解能力以及計算能力,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設(shè),,當(dāng)時,,即可求得答案.【詳解】(1),,,函數(shù)在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設(shè),,當(dāng)時,,,令,解得,當(dāng)時,,函數(shù)在上單調(diào)遞減;當(dāng)時,,函數(shù)在上單調(diào)遞增.,,,當(dāng)時,對任意恒成立,即當(dāng)時,對任意恒成立.【點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關(guān)鍵是掌握由導(dǎo)數(shù)求切線方程的解法和根據(jù)導(dǎo)數(shù)求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點睛】本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)用,關(guān)鍵在于識記公式,屬中檔題.19、(1);(2).【解析】
分析:(1)先根據(jù)絕對值幾何意義將不等式化為三個不等式組,分別求解,最后求并集,(2)先化簡不等式為,再根據(jù)絕對值三角不等式得最小值,最后解不等式得的取值范圍.詳解:(1)當(dāng)時,可得的解集為.(2)等價于.而,且當(dāng)時等號成立.故等價于.由可得或,所以的取值范圍是.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.20、(1)見解析;(2)最大值為.【解析】
(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進(jìn)而可證得結(jié)論成立;(2)由可得出,并將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,進(jìn)而可得出實數(shù)的最大值.【詳解】(1).當(dāng)時,函數(shù)單調(diào)遞減,則;當(dāng)時,函數(shù)單調(diào)遞增,則;當(dāng)時,函數(shù)單調(diào)遞增,則.綜上所述,,所以;(2)因為恒成立,且,,所以恒成立,即.因為,當(dāng)且僅當(dāng)時等號成立,所以,實數(shù)的最大值為.【點睛】本題考查含絕對值函數(shù)最值的求解,同時也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計算能力,屬于中等題.21、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ),,兩式相減化簡整理利用等比數(shù)列的通項公式即可得出.(Ⅱ)由題設(shè)可得,可得,利用錯位相減法即可得出.【詳解】解:(Ⅰ)因為,故,兩式相減可得,,故,因為是等比數(shù)列,∴,又,所以,故,所以;(Ⅱ)由題設(shè)可得,所以,所以,①則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年物聯(lián)網(wǎng)設(shè)備管理系統(tǒng)開發(fā)合同2篇
- 二零二四年墻體廣告租賃合同涵蓋廣告位更新維護(hù)責(zé)任3篇
- 2025年房地產(chǎn)項目委托產(chǎn)權(quán)登記及過戶服務(wù)合同3篇
- 二零二五年度衛(wèi)生間清潔保養(yǎng)服務(wù)合同3篇
- 二零二五年房地產(chǎn)物業(yè)管理服務(wù)委托合同模板3篇
- 2025年度生態(tài)環(huán)保型建筑材料采購合同3篇
- 二零二五年服裝店庫存管理師聘用合同樣本3篇
- 2025年度網(wǎng)絡(luò)安全防護(hù)技術(shù)解決方案定制合同3篇
- 二零二五年度河堤施工環(huán)境保護(hù)與污染防治合同3篇
- 二零二五年度環(huán)保材料買賣合同規(guī)范文本2篇
- 【人教版】九年級化學(xué)上冊期末試卷及答案【【人教版】】
- 四年級數(shù)學(xué)上冊期末試卷及答案【可打印】
- 人教版四年級數(shù)學(xué)下冊課時作業(yè)本(含答案)
- 中小學(xué)人工智能教育方案
- 高三完形填空專項訓(xùn)練單選(部分答案)
- 護(hù)理查房高鉀血癥
- 項目監(jiān)理策劃方案匯報
- 《職業(yè)培訓(xùn)師的培訓(xùn)》課件
- 建筑企業(yè)新年開工儀式方案
- 營銷組織方案
- 初中英語閱讀理解專項練習(xí)26篇(含答案)
評論
0/150
提交評論