廣西玉林市福綿高級中學2024屆高考數(shù)學二模試卷含解析_第1頁
廣西玉林市福綿高級中學2024屆高考數(shù)學二模試卷含解析_第2頁
廣西玉林市福綿高級中學2024屆高考數(shù)學二模試卷含解析_第3頁
廣西玉林市福綿高級中學2024屆高考數(shù)學二模試卷含解析_第4頁
廣西玉林市福綿高級中學2024屆高考數(shù)學二模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣西玉林市福綿高級中學2024屆高考數(shù)學二模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.2.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.3.已知函數(shù),若,則a的取值范圍為()A. B. C. D.4.已知m為實數(shù),直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件5.復數(shù)的實部與虛部相等,其中為虛部單位,則實數(shù)()A.3 B. C. D.6.已知,,,,則()A. B. C. D.7.函數(shù)(或)的圖象大致是()A. B. C. D.8.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結(jié)對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現(xiàn)選出3位老教師負責指導5位新入聘教師,則不同的師徒結(jié)對方式共有()種.A.360 B.240 C.150 D.1209.已知定義在上函數(shù)的圖象關(guān)于原點對稱,且,若,則()A.0 B.1 C.673 D.67410.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.11.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.12.若不相等的非零實數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)有且只有一個零點,則實數(shù)的取值范圍為__________.14.已知直線被圓截得的弦長為2,則的值為__15.如圖,在直四棱柱中,底面是平行四邊形,點是棱的中點,點是棱靠近的三等分點,且三棱錐的體積為2,則四棱柱的體積為______.16.已知矩形ABCD,AB=4,BC=3,以A,B為焦點,且過C,D兩點的雙曲線的離心率為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在如圖所示的幾何體中,面CDEF為正方形,平面ABCD為等腰梯形,AB//CD,AB=2BC,點Q為AE的中點.(1)求證:AC//平面DQF;(2)若∠ABC=60°,AC⊥FB,求BC與平面DQF所成角的正弦值.18.(12分)已知函數(shù)(1)解不等式;(2)若函數(shù),若對于任意的,都存在,使得成立,求實數(shù)的取值范圍.19.(12分)已知,,設(shè)函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.20.(12分)中,內(nèi)角的對邊分別為,.(1)求的大?。唬?)若,且為的重心,且,求的面積.21.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增,求實數(shù)的值;(2)定義:若直線與曲線都相切,我們稱直線為曲線、的公切線,證明:曲線與總存在公切線.22.(10分)(選修4-4:坐標系與參數(shù)方程)在平面直角坐標系,已知曲線(為參數(shù)),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

設(shè),通過,再利用向量的加減運算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點睛】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.2、C【解析】

過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.3、C【解析】

求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時,是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時可先確定函數(shù)定義域,在定義域內(nèi)求解.4、A【解析】

根據(jù)直線平行的等價條件,求出m的值,結(jié)合充分條件和必要條件的定義進行判斷即可.【詳解】當m=1時,兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當m=0時,兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當m≠0時,則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l(fā)1∥l2”的充要條件,故答案為:A【點睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價條件,意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題也可以利用下面的結(jié)論解答,直線和直線平行,則且兩直線不重合,求出參數(shù)的值后要代入檢驗看兩直線是否重合.5、B【解析】

利用乘法運算化簡復數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點睛】本題考查復數(shù)的概念及復數(shù)的乘法運算,考查學生的基本計算能力,是一道容易題.6、D【解析】

令,求,利用導數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導,,故單調(diào)遞增:∴,當,設(shè),,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導數(shù)判斷式子的大小,屬于中檔題.7、A【解析】

確定函數(shù)的奇偶性,排除兩個選項,再求時的函數(shù)值,再排除一個,得正確選項.【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對稱,排除B,C,當時,,排除D,故選:A.【點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負,以及函數(shù)值的變化趨勢,排除錯誤選項,得正確結(jié)論.8、C【解析】

可分成兩類,一類是3個新教師與一個老教師結(jié)對,其他一新一老結(jié)對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結(jié)對,有種結(jié)對結(jié)對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結(jié)對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應(yīng)用.解題關(guān)鍵確定怎樣完成新老教師結(jié)對這個事情,是先分類還是先分步,確定方法后再計數(shù).本題中有一個平均分組問題.計數(shù)時容易出錯.兩組中每組中人數(shù)都是2,因此方法數(shù)為.9、B【解析】

由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.10、A【解析】試題分析:由題意,得,解得,故選A.考點:函數(shù)的定義域.11、C【解析】

如圖所示,當點C位于垂直于面的直徑端點時,三棱錐的體積最大,設(shè)球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.12、A【解析】

由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因為,,是不相等的非零實數(shù),所以,此時,所以.故選:A【點睛】本題考查了等差等比數(shù)列的綜合應(yīng)用,考查了學生概念理解,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

當時,轉(zhuǎn)化條件得有唯一實數(shù)根,令,通過求導得到的單調(diào)性后數(shù)形結(jié)合即可得解.【詳解】當時,,故不是函數(shù)的零點;當時,即,令,,,當時,;當時,,的單調(diào)減區(qū)間為,增區(qū)間為,又,可作出的草圖,如圖:則要使有唯一實數(shù)根,則.故答案為:.【點睛】本題考查了導數(shù)的應(yīng)用,考查了轉(zhuǎn)化化歸思想和數(shù)形結(jié)合思想,屬于難題.14、1【解析】

根據(jù)弦長為半徑的兩倍,得直線經(jīng)過圓心,將圓心坐標代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,

因為直線被圓截得的弦長為2,

所以直線經(jīng)過圓心(1,1),

,解得.故答案為:1.【點睛】本題考查了直線與圓相交的性質(zhì),屬基礎(chǔ)題.15、12【解析】

由題意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解?!驹斀狻坑深}意,設(shè)底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為?!军c睛】本題主要考查了棱柱與棱錐的體積的計算問題,其中解答中正確認識幾何體的結(jié)構(gòu)特征,合理、恰當?shù)乇硎局彼睦庵忮F的體積是解答本題的關(guān)鍵,著重考查了推理與運算能力,以及空間想象能力,屬于中檔試題。16、2【解析】

根據(jù)為焦點,得;又求得,從而得到離心率.【詳解】為焦點在雙曲線上,則又本題正確結(jié)果:【點睛】本題考查利用雙曲線的定義求解雙曲線的離心率問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)連接交于點,連接,通過證明,證得平面.(2)建立空間直角坐標系,利用直線的方向向量和平面的法向量,計算出線面角的正弦值.【詳解】(1)證明:連接交于點,連接,因為四邊形為正方形,所以點為的中點,又因為為的中點,所以;平面平面,平面.(2)解:,設(shè),則,在中,,由余弦定理得:,.又,平面..平面.如圖建立的空間直角坐標系.在等腰梯形中,可得.則.那么設(shè)平面的法向量為,則有,即,取,得.設(shè)與平面所成的角為,則.所以與平面所成角的正弦值為.【點睛】本小題主要考查線面平行的證明,考查線面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)(2)【解析】

(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對值三角不等式,求得的取值范圍,根據(jù)分段函數(shù)解析式,求得的取值范圍,結(jié)合題意列不等式,解不等式求得的取值范圍.【詳解】(1),由得或或;解得.故所求解集為.(2),即.由(1)知,所以,即.∴,∴.【點睛】本小題考查了絕對值不等式,絕對值三角不等式和函數(shù)最值問題,考查運算求解能力,推理論證能力,化歸與轉(zhuǎn)化思想.19、(1);(2)證明見解析【解析】

(1)利用零點分段法,求出各段的取值范圍然后取并集可得結(jié)果.(2)利用絕對值三角不等式可得,然后使用柯西不等式可得結(jié)果.【詳解】(1)由,所以由當時,則所以當時,則當時,則綜上所述:(2)由當且僅當時取等號所以由,所以所以令根據(jù)柯西不等式,則當且僅當,即取等號由故,又則【點睛】本題考查使用零點分段法求解絕對值不等式以及柯西不等式的應(yīng)用,屬基礎(chǔ)題.20、(1);(2)【解析】

(1)利用正弦定理,轉(zhuǎn)化為,分析運算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.21、(1);(2)見解析.【解析】

(1)求出導數(shù),問題轉(zhuǎn)化為在上恒成立,利用導數(shù)求出的最小值即可求解;(2)分別設(shè)切點橫坐標為,利用導數(shù)的幾何意義寫出切線方程,問題轉(zhuǎn)化為證明兩直線重合,只需滿足有解即可,利用函數(shù)的導數(shù)及零點存在性定理即可證明存在.【詳解】(1),函數(shù)在上單調(diào)遞增等價于在上恒成立.令,得,所以在單調(diào)遞減,在單調(diào)遞增,則.因為,則在上恒成立等價于在上恒成立;又,所以,即.(2)設(shè)的切點橫坐標為,則切線方程為……①設(shè)的切點橫坐標為,則,切線方程為……②若存在,使①②成為同一條直線,則曲線與存在公切線,由①②得消去得即令,則所以,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論