福建省示范名校2024屆高三第二次模擬考試數(shù)學試卷含解析_第1頁
福建省示范名校2024屆高三第二次模擬考試數(shù)學試卷含解析_第2頁
福建省示范名校2024屆高三第二次模擬考試數(shù)學試卷含解析_第3頁
福建省示范名校2024屆高三第二次模擬考試數(shù)學試卷含解析_第4頁
福建省示范名校2024屆高三第二次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省示范名校2024屆高三第二次模擬考試數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)數(shù)列的各項均為正數(shù),前項和為,,且,則()A.128 B.65 C.64 D.632.設(shè)不等式組,表示的平面區(qū)域為,在區(qū)域內(nèi)任取一點,則點的坐標滿足不等式的概率為A. B.C. D.3.如圖,在中,,且,則()A.1 B. C. D.4.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.635.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.6.若,則()A. B. C. D.7.復數(shù)滿足,則復數(shù)等于()A. B. C.2 D.-28.設(shè)為銳角,若,則的值為()A. B. C. D.9.已知函數(shù)滿足,當時,,則()A.或 B.或C.或 D.或10.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.11.設(shè)α,β為兩個平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面12.已知函數(shù)有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)14.下表是關(guān)于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調(diào)查數(shù)據(jù),人數(shù)如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現(xiàn)要在所有參與調(diào)查的人中用分層抽樣的方法抽取個人做進一步的調(diào)研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.15.設(shè)第一象限內(nèi)的點(x,y)滿足約束條件,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_____.16.已知一組數(shù)據(jù),1,0,,的方差為10,則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2019年安慶市在大力推進城市環(huán)境、人文精神建設(shè)的過程中,居民生活垃圾分類逐漸形成意識.有關(guān)部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調(diào)查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調(diào)查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應(yīng)概率如下:贈送話費(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求X的分布列.附:,若,則,.18.(12分)在中,、、的對應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點,求的長.19.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.20.(12分)已知點和橢圓.直線與橢圓交于不同的兩點,.(1)當時,求的面積;(2)設(shè)直線與橢圓的另一個交點為,當為中點時,求的值.21.(12分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.22.(10分)已知函數(shù),,使得對任意兩個不等的正實數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個實根,且,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項和公式求.【詳解】因為,所以,所以,所以數(shù)列是等比數(shù)列,又因為,所以,.故選:D【點睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項和公式,還考查了運算求解的能力,屬于中檔題.2、A【解析】

畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點,在區(qū)域內(nèi)是一個以原點為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.【點睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.3、C【解析】

由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點共線,又得到一個關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關(guān)知識,結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.4、B【解析】

根據(jù)程序框圖中的循環(huán)結(jié)構(gòu)的運算,直至滿足條件退出循環(huán)體,即可得出結(jié)果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.【點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.5、A【解析】

設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質(zhì)的應(yīng)用,考查計算能力,屬于中等題.6、D【解析】

直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.7、B【解析】

通過復數(shù)的模以及復數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復數(shù)滿足,∴,故選B.【點睛】本題主要考查復數(shù)的基本運算,復數(shù)模長的概念,屬于基礎(chǔ)題.8、D【解析】

用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.9、C【解析】

簡單判斷可知函數(shù)關(guān)于對稱,然后根據(jù)函數(shù)的單調(diào)性,并計算,結(jié)合對稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對稱當時,,可知在單調(diào)遞增則又函數(shù)關(guān)于對稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點睛】本題考查函數(shù)的對稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗分析能力,屬中檔題.10、C【解析】

根據(jù)三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎(chǔ)題.11、B【解析】

本題考查了空間兩個平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.12、C【解析】

先求導得(),由于函數(shù)有兩個不同的極值點,,轉(zhuǎn)化為方程有兩個不相等的正實數(shù)根,根據(jù),,,求出的取值范圍,而有解,通過分裂參數(shù)法和構(gòu)造新函數(shù),通過利用導數(shù)研究單調(diào)性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數(shù)有兩個不同的極值點,,所以方程有兩個不相等的正實數(shù)根,于是有解得.若不等式有解,所以因為.設(shè),,故在上單調(diào)遞增,故,所以,所以的取值范圍是.故選:C.【點睛】本題考查利用導數(shù)研究函數(shù)單調(diào)性、最值來求參數(shù)取值范圍,以及運用分離參數(shù)法和構(gòu)造函數(shù)法,還考查分析和計算能力,有一定的難度.二、填空題:本題共4小題,每小題5分,共20分。13、充分不必要【解析】

由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.14、32【解析】

由已知可得抽取的比例,計算出所有被調(diào)查的人數(shù),再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調(diào)查的總?cè)藬?shù)為人,則分層抽樣的樣本容量是人.故答案為:32【點睛】本題考查分層抽樣中求樣本容量,屬于基礎(chǔ)題.15、【解析】不等式表示的平面區(qū)域陰影部分,當直線ax+by=z(a>0,b>0)過直線x?y+2=0與直線2x?y?6=0的交點(8,10)時,目標函數(shù)z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當且僅當時取等號,則的最小值為.16、7或【解析】

依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.【點睛】本題主要考查方差公式的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)詳見解析【解析】

(1)利用頻率分布直方圖平均數(shù)等于小矩形的面積乘以底邊中點橫坐標之和,再利用正態(tài)分布的對稱性進行求解.(2)寫出隨機變量的所有可能取值,利用互斥事件和相互獨立事件同時發(fā)生的概率計算公式,再列表得到其分布列.【詳解】解:(1)從這1000人問卷調(diào)查得到的平均值為∵由于得分Z服從正態(tài)分布,(2)設(shè)得分不低于分的概率為p,(或由頻率分布直方圖知)法一:X的取值為10,20,30,40;;;;所以X的分布列為X10203040P法二:2次隨機贈送的話費及對應(yīng)概率如下2次話費總和203040PX的取值為10,20,30,40;;;;所以X的分布列為X10203040P【點睛】本題考查了正態(tài)分布、離散型隨機變量的分布列,屬于基礎(chǔ)題.18、(1);(2).【解析】

(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得∴【點睛】本題主要考查了正弦定理和余弦定理的運用.考查了學生對三角函數(shù)基礎(chǔ)知識的綜合運用.19、(1)證明見解析(2)【解析】

(1)由已知線面垂直得,結(jié)合菱形對角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,由已知線面垂直知與平面所成角為,這樣可計算出的長,寫出各點坐標,求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因為平面,平面,所以.因為四邊形是菱形,所以.又因為,平面,平面,所以平面.解:(2)據(jù)題設(shè)知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標系如圖所示,因為與平面所成角為,即,所以又,所以,所以所以設(shè)平面的一個法向量,則令,則.因為平面,所以為平面的一個法向量,且所以,.所以二面角的正弦值為.【點睛】本題考查線面垂直的判定定理和性質(zhì)定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標系,用空間向量法求空間角,這樣可減少思維量,把問題轉(zhuǎn)化為計算.20、(1);(2)或【解析】

(1)聯(lián)立直線的方程和橢圓方程,求得交點的橫坐標,由此求得三角形的面積.(2)法一:根據(jù)的坐標求得的坐標,將的坐標都代入橢圓方程,化簡后求得的坐標,進而求得的值.法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡后寫出根與系數(shù)關(guān)系,結(jié)合求得點的坐標,進而求得的值.【詳解】(1)設(shè),,若,則直線的方程為,由,得,解得,,設(shè)直線與軸交于點,則且.(2)法一:設(shè)點因為,,所以又點,都在橢圓上,所以解得或所以或.法二:設(shè)顯然直線有斜率,設(shè)直線的方程為由,得所以又解得或所以或所以或.【點睛】本小題主要考查直線和橢圓的位置關(guān)系,考查橢圓中三角形面積的求法,考查運算求解能力,屬于中檔題.21、(1)(2)【解析】

(1)利用降次公式、輔助角公式化簡解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)遞增區(qū)間.(2)先由求得,利用正弦定理得到,結(jié)合余弦定理列方程,求得,由此求得三角形的面積.【詳解】(1)函數(shù),,由,得.所以的單調(diào)遞增區(qū)間為.(2)因為且為銳角,所以.由及正弦定理可得,又,由余弦定理可得,解得,.【點睛】本小題主要考查三角恒等變換,考查三角函數(shù)單調(diào)區(qū)間的求法,考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.22、(1);(2)證明見解析.【解析】

(1)根據(jù)題意,在上單調(diào)遞減,求導得,分類討論的單調(diào)性,結(jié)合題意,得出的解析式;(2)由為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論