江蘇省南京六中學2024屆中考考前最后一卷數(shù)學試卷含解析_第1頁
江蘇省南京六中學2024屆中考考前最后一卷數(shù)學試卷含解析_第2頁
江蘇省南京六中學2024屆中考考前最后一卷數(shù)學試卷含解析_第3頁
江蘇省南京六中學2024屆中考考前最后一卷數(shù)學試卷含解析_第4頁
江蘇省南京六中學2024屆中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南京六中學2024屆中考考前最后一卷數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.42.統(tǒng)計學校排球隊員的年齡,發(fā)現(xiàn)有12、13、14、15等四種年齡,統(tǒng)計結果如下表:年齡(歲)12131415人數(shù)(個)2468根據(jù)表中信息可以判斷該排球隊員年齡的平均數(shù)、眾數(shù)、中位數(shù)分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、153.如圖,在平面直角坐標系中,⊙P的圓心坐標是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長為4,則a的值是()A.4 B.3+ C.3 D.4.如圖,直線l是一次函數(shù)y=kx+b的圖象,若點A(3,m)在直線l上,則m的值是()A.﹣5 B. C. D.75.如圖,四邊形ABCD是邊長為1的正方形,動點E、F分別從點C,D出發(fā),以相同速度分別沿CB,DC運動(點E到達C時,兩點同時停止運動).連接AE,BF交于點P,過點P分別作PM∥CD,PN∥BC,則線段MN的長度的最小值為()A. B. C. D.16.下列是我國四座城市的地鐵標志圖,其中是中心對稱圖形的是()A. B. C. D.7.如圖,小正方形邊長均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.8.如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點.設AC=2,BD=1,AP=x,△AMN的面積為y,則y關于x的函數(shù)圖象大致形狀是()A. B. C. D.9.最小的正整數(shù)是()A.0B.1C.﹣1D.不存在10.已知二次函數(shù)(為常數(shù)),當自變量的值滿足時,與其對應的函數(shù)值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或5二、填空題(共7小題,每小題3分,滿分21分)11.已知一元二次方程x2-4x-3=0的兩根為m,n,則-mn+=.12.數(shù)據(jù)﹣2,0,﹣1,2,5的平均數(shù)是_____,中位數(shù)是_____.13.將一次函數(shù)y=2x+4的圖象向下平移3個單位長度,相應的函數(shù)表達式為_____.14.不透明的袋子里裝有2個白球,1個紅球,這些球除顏色外無其他差別,從袋子中隨機摸出1個球,則摸出白球的概率是________.15.對甲、乙兩臺機床生產(chǎn)的零件進行抽樣測量,其平均數(shù)、方差計算結果如下:機床甲:=10,=0.02;機床乙:=10,=0.06,由此可知:________(填甲或乙)機床性能好.16.計算:3﹣(﹣2)=____.17.將數(shù)字37000000用科學記數(shù)法表示為_____.三、解答題(共7小題,滿分69分)18.(10分)甲、乙兩個人做游戲:在一個不透明的口袋中裝有1張相同的紙牌,它們分別標有數(shù)字1,2,3,1.從中隨機摸出一張紙牌然后放回,再隨機摸出一張紙牌,若兩次摸出的紙牌上數(shù)字之和是3的倍數(shù),則甲勝;否則乙勝.這個游戲?qū)﹄p方公平嗎?請列表格或畫樹狀圖說明理由.19.(5分)先化簡:()÷,再從﹣2,﹣1,0,1這四個數(shù)中選擇一個合適的數(shù)代入求值.20.(8分)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點.分別求出一次函數(shù)與反比例函數(shù)的解析式;求△OAB的面積.21.(10分)為了解某市市民上班時常用交通工具的狀況,某課題小組隨機調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結果繪制了如圖所示的尚不完整的統(tǒng)計圖:根據(jù)以上統(tǒng)計圖,解答下列問題:本次接受調(diào)查的市民共有人;扇形統(tǒng)計圖中,扇形B的圓心角度數(shù)是;請補全條形統(tǒng)計圖;若該市“上班族”約有15萬人,請估計乘公交車上班的人數(shù).22.(10分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線交CB的延長線于點E,交AC于點F.(1)求證:點F是AC的中點;(2)若∠A=30°,AF=,求圖中陰影部分的面積.23.(12分)立定跳遠是嘉興市體育中考的抽考項目之一,某校九年級(1),(2)班準備集體購買某品牌的立定跳遠訓練鞋.現(xiàn)了解到某網(wǎng)店正好有這種品牌訓練鞋的促銷活動,其購買的單價y(元/雙)與一次性購買的數(shù)量x(雙)之間滿足的函數(shù)關系如圖所示.當10≤x<60時,求y關于x的函數(shù)表達式;九(1),(2)班共購買此品牌鞋子100雙,由于某種原因需分兩次購買,且一次購買數(shù)量多于25雙且少于60雙;①若兩次購買鞋子共花費9200元,求第一次的購買數(shù)量;②如何規(guī)劃兩次購買的方案,使所花費用最少,最少多少元?24.(14分)某校檢測學生跳繩水平,抽樣調(diào)查了部分學生的“1分鐘跳繩”成績,并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數(shù)是人,補全頻數(shù)分布直方圖,扇形圖中m=;(2)本次調(diào)查數(shù)據(jù)中的中位數(shù)落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校4500名學生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關鍵.2、B【解析】

根據(jù)加權平均數(shù)、眾數(shù)、中位數(shù)的計算方法求解即可.【詳解】,15出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,故眾數(shù)是15,從小到大排列后,排在10、11兩個位置的數(shù)是14,14,故中位數(shù)是14.故選B.【點睛】本題考查了平均數(shù)、眾數(shù)與中位數(shù)的意義.數(shù)據(jù)x1、x2、……、xn的加權平均數(shù):(其中w1、w2、……、wn分別為x1、x2、……、xn的權數(shù)).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).3、B【解析】試題解析:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結PB,如圖,∵⊙P的圓心坐標是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D點坐標為(3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.考點:1.垂徑定理;2.一次函數(shù)圖象上點的坐標特征;3.勾股定理.4、C【解析】

把(-2,0)和(0,1)代入y=kx+b,求出解析式,再將A(3,m)代入,可求得m.【詳解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函數(shù)解析式y(tǒng)=x+1,再將A(3,m)代入,得m=×3+1=.故選C.【點睛】本題考核知識點:考查了待定系數(shù)法求一次函數(shù)的解析式,根據(jù)解析式再求函數(shù)值.5、B【解析】分析:由于點P在運動中保持∠APD=90°,所以點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.詳解:由于點P在運動中保持∠APD=90°,∴點P的路徑是一段以AD為直徑的弧,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC-QP=,故選B.點睛:本題主要考查的是圓的相關知識和勾股定理,屬于中等難度的題型.解決這個問題的關鍵是根據(jù)圓的知識得出點P的運動軌跡.6、D【解析】

根據(jù)中心對稱圖形的定義解答即可.【詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關鍵.7、B【解析】

根據(jù)網(wǎng)格的特點求出三角形的三邊,再根據(jù)相似三角形的判定定理即可求解.【詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項B的各邊為1、、與它的各邊對應成比例.故選B.【點晴】此題主要考查相似三角形的判定,解題的關鍵是熟知相似三角形的判定定理.8、C【解析】△AMN的面積=AP×MN,通過題干已知條件,用x分別表示出AP、MN,根據(jù)所得的函數(shù),利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;解:(1)當0<x≤1時,如圖,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函數(shù)圖象開口向上;(2)當1<x<2,如圖,同理證得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函數(shù)圖象開口向下;綜上答案C的圖象大致符合.故選C.本題考查了二次函數(shù)的圖象,考查了學生從圖象中讀取信息的數(shù)形結合能力,體現(xiàn)了分類討論的思想.9、B【解析】

根據(jù)最小的正整數(shù)是1解答即可.【詳解】最小的正整數(shù)是1.故選B.【點睛】本題考查了有理數(shù)的認識,關鍵是根據(jù)最小的正整數(shù)是1解答.10、D【解析】

由解析式可知該函數(shù)在時取得最小值0,拋物線開口向上,當時,y隨x的增大而增大;當時,y隨x的增大而減??;根據(jù)時,函數(shù)的最小值為4可分如下三種情況:①若,時,y取得最小值4;②若-1<h<3時,當x=h時,y取得最小值為0,不是4;③若,當x=3時,y取得最小值4,分別列出關于h的方程求解即可.【詳解】解:∵當x>h時,y隨x的增大而增大,當時,y隨x的增大而減小,并且拋物線開口向上,

∴①若,當時,y取得最小值4,

可得:4,

解得或(舍去);

②若-1<h<3時,當x=h時,y取得最小值為0,不是4,

∴此種情況不符合題意,舍去;

③若-1≤x≤3<h,當x=3時,y取得最小值4,

可得:,

解得:h=5或h=1(舍).

綜上所述,h的值為-3或5,

故選:D.【點睛】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值分類討論是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】試題分析:由m與n為已知方程的解,利用根與系數(shù)的關系求出m+n=4,mn=﹣3,將所求式子利用完全平方公式變形后,即﹣mn+=﹣3mn=16+9=1.故答案為1.考點:根與系數(shù)的關系.12、0.80【解析】

根據(jù)中位數(shù)的定義和平均數(shù)的求法計算即可,中位數(shù)是將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).【詳解】平均數(shù)=(?2+0?1+2+5)÷5=0.8;把這組數(shù)據(jù)按從大到小的順序排列是:5,2,0,-1,-2,故這組數(shù)據(jù)的中位數(shù)是:0.故答案為0.8;0.【點睛】本題考查了平均數(shù)與中位數(shù)的定義,解題的關鍵是熟練的掌握平均數(shù)與中位數(shù)的定義.13、y=2x+1【解析】分析:直接根據(jù)函數(shù)圖象平移的法則進行解答即可.詳解:將一次函數(shù)y=2x+4的圖象向下平移3個單位長度,相應的函數(shù)是y=2x+4-3=2x+1;故答案為y=2x+1.點睛:本題考查的是一次函數(shù)的圖象與幾何變換,熟知“上加下減”的法則是解答此題的關鍵.14、【解析】

先求出球的總數(shù),再根據(jù)概率公式求解即可.【詳解】∵不透明的袋子里裝有2個白球,1個紅球,∴球的總數(shù)=2+1=3,∴從袋子中隨機摸出1個球,則摸出白球的概率=.故答案為.【點睛】本題考查的是概率公式,熟知隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)所有可能出現(xiàn)的結果數(shù)的商是解答此題的關鍵.15、甲.【解析】試題分析:根據(jù)方差的意義可知,方差越小,穩(wěn)定性越好,由此即可求出答案.試題解析:因為甲的方差小于乙的方差,甲的穩(wěn)定性好,所以甲機床的性能好.故答案為甲.考點:1.方差;2.算術平均數(shù).16、2+2【解析】

根據(jù)平面向量的加法法則計算即可.【詳解】3﹣(﹣2)=3﹣+2=2+2,故答案為:2+2,【點睛】本題考查平面向量,熟練掌握平面向量的加法法則是解題的關鍵.17、3.7×107【解析】

根據(jù)科學記數(shù)法即可得到答案.【詳解】數(shù)字37000000用科學記數(shù)法表示為3.7×107.【點睛】本題主要考查了科學記數(shù)法的基本概念,解本題的要點在于熟知科學記數(shù)法的相關知識.三、解答題(共7小題,滿分69分)18、不公平【解析】【分析】列表得到所有情況,然后找出數(shù)字之和是3的倍數(shù)的情況,利用概率公式計算后進行判斷即可得.【詳解】根據(jù)題意列表如下:12311(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)所有等可能的情況數(shù)有16種,其中兩次摸出的紙牌上數(shù)字之和是3的倍數(shù)的情況有:(2,1),(1,2),(1,2),(3,3),(2,1),共5種,∴P(甲獲勝)=,P(乙獲勝)=1﹣=,則該游戲不公平.【點睛】本題考查了列表法或樹狀圖法求概率,判斷游戲的公平性,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.19、,1.【解析】

先算括號內(nèi)的減法,同時把除法變成乘法,再根據(jù)分式的乘法進行計算,最后代入求出即可.【詳解】原式=?=?=.∵由題意,x不能取1,﹣1,﹣2,∴x取2.當x=2時,原式===1.【點睛】本題考查了分式的混合運算和求值,能正確根據(jù)分式的運算法則進行化簡是解答此題的關鍵.20、(1)反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=﹣x+1.(2)2.【解析】

(1)根據(jù)反比例函數(shù)y2=的圖象過點A(2,3),利用待定系數(shù)法求出m,進而得出B點坐標,然后利用待定系數(shù)法求出一次函數(shù)解析式;(2)設直線y1=kx+b與x軸交于C,求出C點坐標,根據(jù)S△AOB=S△AOC﹣S△BOC,列式計算即可.【詳解】(1)∵反比例函數(shù)y2=的圖象過A(2,3),B(6,n)兩點,∴m=2×3=6n,∴m=6,n=1,∴反比例函數(shù)的解析式為y=,B的坐標是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函數(shù)的解析式為y=﹣x+1.(2)如圖,設直線y=﹣x+1與x軸交于C,則C(2,0).S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)解析式以及求三角形面積等知識,根據(jù)已知得出B點坐標以及得出S△AOB=S△AOC﹣S△BOC是解題的關鍵.21、(1)1;(2)43.2°;(3)條形統(tǒng)計圖如圖所示:見解析;(4)估計乘公交車上班的人數(shù)為6萬人.【解析】

(1)根據(jù)D組人數(shù)以及百分比計算即可.(2)根據(jù)圓心角度數(shù)=360°×百分比計算即可.(3)求出A,C兩組人數(shù)畫出條形圖即可.(4)利用樣本估計總體的思想解決問題即可.【詳解】(1)本次接受調(diào)查的市民共有:50÷25%=1(人),故答案為1.(2)扇形統(tǒng)計圖中,扇形B的圓心角度數(shù)=360°×=43.2°;故答案為:43.2°(3)C組人數(shù)=1×40%=80(人),A組人數(shù)=1﹣24﹣80﹣50﹣16=30(人).條形統(tǒng)計圖如圖所示:(4)15×40%=6(萬人).答:估計乘公交車上班的人數(shù)為6萬人.【點睛】本題考查條形統(tǒng)計圖,扇形統(tǒng)計圖,樣本估計總體等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.22、(1)見解析;(2)【解析】

(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據(jù)切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據(jù)切線的性質(zhì)得到OD⊥EF,從而可計算出DE的長,然后根據(jù)扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進行計算即可.【詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線,∵EF為⊙O的切線,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點F是AC中點;(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD為等邊三角形,∴∠BOD=60°,∵EF為切線,∴OD⊥EF,在Rt△ODE中,DE=OD=,∴S陰影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.23、(1)y=150﹣x;(2)①第一批購買數(shù)量為30雙或40雙.②第一次買26雙,第二次買74雙最省錢,最少9144元.【解析】

(1)若購買x雙(10<x<1),每件的單價=140﹣(購買數(shù)量﹣10),依此可得y關于x的函數(shù)關系式;(2)①設第一批購買x雙,則第二批購買(100﹣x)雙,根據(jù)購買兩批鞋子一共花了9200元列出方程求解即可.分兩種情況考慮:當25<x≤40時,則1≤100﹣x<75;當40<x<1時,則40<100﹣x<1.②把兩次的花費與第一次購

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論