版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省湛江市雷州職業(yè)高級中學高一數(shù)學理聯(lián)考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.若直線過點(1,2),則的最小值等于(
)A.3 B.4 C. D.參考答案:C【分析】將代入直線方程得到,利用均值不等式得到的最小值.【詳解】將代入直線方程得到當時等號成立故答案選C【點睛】本題考查了直線方程,均值不等式,1的代換是解題的關鍵.2.設函數(shù)則
(
)
參考答案:B略3.把函數(shù)的圖像向右平移個單位可以得到函數(shù)的圖像,則A.
B.
C.
D.參考答案:A4.已知均為非零實數(shù),集合,則集合的元素的個數(shù)為(
)。
A、2
B、3
C、4
D、5參考答案:A5.過點和的直線與直線平行,則的值為
A.
B.
C.
D.參考答案:A6.下面四個命題:
①若直線a,b異面,b,c異面,則a,c異面;
②若直線a,b相交,b,c相交,則a,c相交;
③若a∥b,則a,b與c所成的角相等;
④若a⊥b,b⊥c,則a∥c.
其中真命題的個數(shù)為()A.1
B.2
C.3
D.4
參考答案:A7.設集合 ()A. B. C. D.參考答案:B8.設i為虛數(shù)單位,若a+(a﹣2)i為純虛數(shù),則實數(shù)a=()A.﹣2 B.0 C.1 D.2參考答案:B【考點】復數(shù)的基本概念.【分析】根據(jù)純虛數(shù)的定義建立方程進行求解即可.【解答】解:若a+(a﹣2)i為純虛數(shù),則,即,得a=0,故選:B.9.如圖1,的兩直角邊、,將它繞直線旋轉一周形成幾何體的體積A.
B.
C.
D.參考答案:C略10.已知組數(shù)據(jù),,…,的平均數(shù)為2,方差為5,則數(shù)據(jù)2+1,2+1,…,2+1的平均數(shù)與方差分別為(
)A.=4,=10 B.=5,=11C.=5,=20 D.=5,=21參考答案:C【分析】根據(jù)題意,利用數(shù)據(jù)的平均數(shù)和方差的性質分析可得答案.【詳解】根據(jù)題意,數(shù)據(jù),,,的平均數(shù)為2,方差為5,則數(shù)據(jù),,,的平均數(shù),其方差;故選:C.【點睛】本題考查數(shù)據(jù)的平均數(shù)、方差的計算,關鍵是掌握數(shù)據(jù)的平均數(shù)、方差的計算公式,屬于基礎題.二、填空題:本大題共7小題,每小題4分,共28分11.已知集合,,若則實數(shù)的取值范圍是,其中
▲
.參考答案:略12.已知則
參考答案:略13.已知集合,,則
.參考答案:{0,1,2}14.tan62°+tan73°-tan62°·tan73°=
.參考答案:-115.若直線2x+(m+1)y+4=0與直線mx+3y+4=0平行,則m=.參考答案:﹣3【考點】直線的一般式方程與直線的平行關系.【分析】由題意可得,解之即可得到答案.【解答】解:∵直線2x+(m+1)x+4=0與直線mx+3y+4=0平行,∴,由,解得m=﹣3,或2,又1,∴m≠2,∴m=﹣3,故答案為:﹣3.16.設數(shù)列滿足:,,則________。參考答案:略17.函數(shù)y=的值域是
參考答案:三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.
已知二次函數(shù)f(x)的二次項系數(shù)為a,且不等式f(x)>-2x的解集為(1,3).若方程f(x)+6a=0有兩個相等的實根,求f(x)的解析式.參考答案:∵f(x)+2x>0的解集為(1,3);f(x)+2x=a(x-1)(x-3),且a<0,f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a,①由方程f(x)+6a=0,得ax2-(2+4a)x+9a=0,②∵方程②有兩個相等的實根,∴Δ=[-(2+4a)]2-4a·9a=0,即5a2-4a-1=0,解得a=1或a=-,又a<0,故舍去a=1.將a=-代入①得,f(x)的解析式為f(x)=-x2-x-.19.設數(shù)列是等差數(shù)列,且且成等比數(shù)列。(1)求數(shù)列的通項公式(2)設,求前n項和.
參考答案:(1);(2).(1)設等差數(shù)列的公差為,又則,,,又,,成等比數(shù)列.∴,即,解得或,
又時,,與,,成等比數(shù)列矛盾,∴,∴,即.
(2)因為,∴
∴.20.(本小題滿分12分)已知關于的方程:(1)當為何值時,方程表示圓(2)若圓與直線:相交于,且,求的值參考答案:解:(1)方程可化為,顯然當即時,方程表示圓
……………5分(2)由(1)得圓方程為,圓心,半徑則圓心到直線:得距離為……………8分,則,有
……10分,解得
……12分略21.(12分)已知直線l1:ax+2y+a+4=0,l2:x+(a+1)y+5=0,l1∥l2,線段AB的兩個端點分別在指向l1與l2上運動,設AB中點C的坐標為(m,n).求m2+n2的最小值.參考答案:考點: 直線的一般式方程與直線的平行關系.專題: 直線與圓.分析: 由l1∥l2列式求得a的值,得到兩條直線方程,由題意,點C在平行于l1,l2且到l1,l2距離相等的直線上,即直線x﹣y+2=0上.然后把m2+n2的最小值轉化為點O到直線x﹣y+2=0的距離得答案.解答: 由l1∥l2,可知,解得a=﹣2.∴兩條直線方程分別為l1:x﹣y﹣1=0,l2:x﹣y+5=0.由題意,點C在平行于l1,l2且到l1,l2距離相等的直線上,即直線x﹣y+2=0上.m2+n2=|CO|2(O為坐標原點).|CO|的最小值為點O到直線x﹣y+2=0的距離d=.∴.點評: 本題考查了直線的一般式方程與直線平行的關系,考查了數(shù)學轉化思想方法,訓練了點到直線的距離公式的應用,是中檔題.22.(10分)已知C是直線l1:3x﹣2y+3=0和直線l2:2x﹣y+2=0的交點,A(1,3),B(3,1).(1)求l1與l2的交點C的坐標;(2)求△ABC的面積.參考答案:考點: 點到直線的距離公式;直線的一般式方程與直線的垂直關系.專題: 直線與圓.分析: (1)解方程組,能求出l1與l2的交點C的坐標.(2)設AB上的高為h,AB邊上的高h就是點C到AB的距離,求出直線AB的方程,再利用點到直線的距離公式能求出h,由此能求出△ABC的面積.解答: 解:(1)解方程組,得所以l
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版企業(yè)破產重整合同
- 2024年度無息個人婚禮籌備借款協(xié)議書下載3篇
- 2025年日喀則貨運資格證模擬考試
- 2024年停薪留職期間員工社會保險及福利協(xié)議合同3篇
- 2025購房合同的范本 購房合同樣本
- 2025年柳州貨運從業(yè)資格證考試卷
- 洛陽理工學院《內科護理學2》2023-2024學年第一學期期末試卷
- 2024年墓地環(huán)境優(yōu)化協(xié)議3篇
- 汽車俱樂部噴泉建設合同
- 2024年度家電品牌全國巡回展銷合同范本3篇
- 【MOOC】法理學-西南政法大學 中國大學慕課MOOC答案
- 遼寧省普通高中2024-2025學年高一上學期12月聯(lián)合考試語文試題(含答案)
- 儲能運維安全注意事項
- 2024蜀繡行業(yè)市場趨勢分析報告
- 電力法律法規(guī)培訓
- 2024年世界職業(yè)院校技能大賽“智能網(wǎng)聯(lián)汽車技術組”參考試題庫(含答案)
- 【課件】校園安全系列之警惕“死亡游戲”主題班會課件
- 化工企業(yè)冬季安全生產檢查表格
- 2024年工程勞務分包聯(lián)合協(xié)議
- 蜜雪冰城員工合同模板
- 廣東省深圳市龍崗區(qū)2024-2025學年三年級上學期11月期中數(shù)學試題(含答案)
評論
0/150
提交評論