版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省福州三牧中學(xué)2024屆中考數(shù)學(xué)最后沖刺模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線(xiàn)內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列運(yùn)算中正確的是()A.x2÷x8=x?6 B.a(chǎn)·a2=a2 C.(a2)3=a5 D.(3a)3=9a32.如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體是()A. B. C. D.3.如圖,釣魚(yú)竿AC長(zhǎng)6m,露在水面上的魚(yú)線(xiàn)BC長(zhǎng)m,某釣者想看看魚(yú)釣上的情況,把魚(yú)竿AC轉(zhuǎn)動(dòng)到AC'的位置,此時(shí)露在水面上的魚(yú)線(xiàn)B′C′為m,則魚(yú)竿轉(zhuǎn)過(guò)的角度是()A.60° B.45° C.15° D.90°4.下列各式屬于最簡(jiǎn)二次根式的有()A. B. C. D.5.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關(guān)系是()A.M>N B.M=N C.M<N D.不能確定6.在函數(shù)y=中,自變量x的取值范圍是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠17.如圖,在△ABC中,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),AC=3,cosA=,將△DAC沿著CD折疊后,點(diǎn)A落在點(diǎn)E處,則BE的長(zhǎng)為()A.5 B.4 C.7 D.58.的算術(shù)平方根是()A.4 B.±4 C.2 D.±29.如圖,在△ABC中,BC=8,AB的中垂線(xiàn)交BC于D,AC的中垂線(xiàn)交BC于E,則△ADE的周長(zhǎng)等于()A.8 B.4 C.12 D.1610.如圖,半⊙O的半徑為2,點(diǎn)P是⊙O直徑AB延長(zhǎng)線(xiàn)上的一點(diǎn),PT切⊙O于點(diǎn)T,M是OP的中點(diǎn),射線(xiàn)TM與半⊙O交于點(diǎn)C.若∠P=20°,則圖中陰影部分的面積為()A.1+ B.1+C.2sin20°+ D.11.如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.下面有三個(gè)推斷:①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;②隨著試驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),“釘尖向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③12.已知:如圖是y=ax2+2x﹣1的圖象,那么ax2+2x﹣1=0的根可能是下列哪幅圖中拋物線(xiàn)與直線(xiàn)的交點(diǎn)橫坐標(biāo)()A. B.C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.菱形ABCD中,,其周長(zhǎng)為32,則菱形面積為_(kāi)___________.14.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點(diǎn)D是AC邊上一動(dòng)點(diǎn),連接BD,以AD為直徑的圓交BD于點(diǎn)E,則線(xiàn)段CE長(zhǎng)度的最小值為_(kāi)__.15.如圖,∠1,∠2是四邊形ABCD的兩個(gè)外角,且∠1+∠2=210°,則∠A+∠D=____度.16.因式分解:y3﹣16y=_____.17.小華到商場(chǎng)購(gòu)買(mǎi)賀卡,他身上帶的錢(qián)恰好能買(mǎi)5張3D立體賀卡或20張普通賀卡若小華先買(mǎi)了3張3D立體賀卡,則剩下的錢(qián)恰好還能買(mǎi)______張普通賀卡.18.點(diǎn)(a-1,y1)、(a+1,y2)在反比例函數(shù)y=(k>0)的圖象上,若y1<y2,則a的范圍是________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)我市某中學(xué)舉行“中國(guó)夢(mèng)?校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.根據(jù)圖示填寫(xiě)下表;
平均數(shù)(分)
中位數(shù)(分)
眾數(shù)(分)
初中部
85
高中部
85
100
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績(jī)較好;計(jì)算兩隊(duì)決賽成績(jī)的方差并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.20.(6分)如圖,在△ABC中,ABAC,AE是∠BAC的平分線(xiàn),∠ABC的平分線(xiàn)BM交AE于點(diǎn)M,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB的長(zhǎng)為半徑的圓經(jīng)過(guò)點(diǎn)M,交BC于點(diǎn)G,交AB于點(diǎn)F.(1)求證:AE為⊙O的切線(xiàn);(2)當(dāng)BC=4,AC=6時(shí),求⊙O的半徑;(3)在(2)的條件下,求線(xiàn)段BG的長(zhǎng).21.(6分)某商場(chǎng)同時(shí)購(gòu)進(jìn)甲、乙兩種商品共100件,其進(jìn)價(jià)和售價(jià)如下表:商品名稱(chēng)甲乙進(jìn)價(jià)(元/件)4090售價(jià)(元/件)60120設(shè)其中甲種商品購(gòu)進(jìn)x件,商場(chǎng)售完這100件商品的總利潤(rùn)為y元.寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;該商場(chǎng)計(jì)劃最多投入8000元用于購(gòu)買(mǎi)這兩種商品,①至少要購(gòu)進(jìn)多少件甲商品?②若銷(xiāo)售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是多少元?22.(8分)如圖,已知拋物線(xiàn)y=ax2+bx+5經(jīng)過(guò)A(﹣5,0),B(﹣4,﹣3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為D,連結(jié)CD.求該拋物線(xiàn)的表達(dá)式;點(diǎn)P為該拋物線(xiàn)上一動(dòng)點(diǎn)(與點(diǎn)B、C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t.①當(dāng)點(diǎn)P在直線(xiàn)BC的下方運(yùn)動(dòng)時(shí),求△PBC的面積的最大值;②該拋物線(xiàn)上是否存在點(diǎn)P,使得∠PBC=∠BCD?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.23.(8分)解不等式組:24.(10分)如今很多初中生購(gòu)買(mǎi)飲品飲用,既影響身體健康又給家庭增加不必要的開(kāi)銷(xiāo),為此數(shù)學(xué)興趣小組對(duì)本班同學(xué)一天飲用飲品的情況進(jìn)行了調(diào)查,大致可分為四種:A:自帶白開(kāi)水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個(gè)統(tǒng)計(jì)圖(如圖),根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:(1)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;(2)在扇形統(tǒng)計(jì)圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);(3)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在自帶白開(kāi)水的5名同學(xué)(男生2人,女生3人)中隨機(jī)抽取2名同學(xué)擔(dān)任生活監(jiān)督員,請(qǐng)用列表法或樹(shù)狀圖法求出恰好抽到一男一女的概率.25.(10分)綜合與探究如圖1,平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+3與x軸分別交于點(diǎn)A(﹣2,0),B(4,0),與y軸交于點(diǎn)C,點(diǎn)D是y軸負(fù)半軸上一點(diǎn),直線(xiàn)BD與拋物線(xiàn)y=ax2+bx+3在第三象限交于點(diǎn)E(﹣4,y)點(diǎn)F是拋物線(xiàn)y=ax2+bx+3上的一點(diǎn),且點(diǎn)F在直線(xiàn)BE上方,將點(diǎn)F沿平行于x軸的直線(xiàn)向右平移m個(gè)單位長(zhǎng)度后恰好落在直線(xiàn)BE上的點(diǎn)G處.(1)求拋物線(xiàn)y=ax2+bx+3的表達(dá)式,并求點(diǎn)E的坐標(biāo);(2)設(shè)點(diǎn)F的橫坐標(biāo)為x(﹣4<x<4),解決下列問(wèn)題:①當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過(guò)點(diǎn)F作x軸的垂線(xiàn)FP,交直線(xiàn)BE于點(diǎn)P,垂足為F,連接FD.是否存在點(diǎn)F,使△FDP與△FDG的面積比為1:2?若存在,直接寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,說(shuō)明理由.26.(12分)給定關(guān)于x的二次函數(shù)y=kx2﹣4kx+3(k≠0),當(dāng)該二次函數(shù)與x軸只有一個(gè)公共點(diǎn)時(shí),求k的值;當(dāng)該二次函數(shù)與x軸有2個(gè)公共點(diǎn)時(shí),設(shè)這兩個(gè)公共點(diǎn)為A、B,已知AB=2,求k的值;由于k的變化,該二次函數(shù)的圖象性質(zhì)也隨之變化,但也有不會(huì)變化的性質(zhì),某數(shù)學(xué)學(xué)習(xí)小組在探究時(shí)得出以下結(jié)論:①與y軸的交點(diǎn)不變;②對(duì)稱(chēng)軸不變;③一定經(jīng)過(guò)兩個(gè)定點(diǎn);請(qǐng)判斷以上結(jié)論是否正確,并說(shuō)明理由.27.(12分)某養(yǎng)雞場(chǎng)有2500只雞準(zhǔn)備對(duì)外出售.從中隨機(jī)抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:(Ⅰ)圖①中的值為;(Ⅱ)求統(tǒng)計(jì)的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(Ⅲ)根據(jù)樣本數(shù)據(jù),估計(jì)這2500只雞中,質(zhì)量為的約有多少只?
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】
根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘;積的乘方法則:把每一個(gè)因式分別乘方,再把所得的冪相乘進(jìn)行計(jì)算即可.【詳解】解:A、x2÷x8=x-6,故該選項(xiàng)正確;
B、a?a2=a3,故該選項(xiàng)錯(cuò)誤;
C、(a2)3=a6,故該選項(xiàng)錯(cuò)誤;
D、(3a)3=27a3,故該選項(xiàng)錯(cuò)誤;
故選A.【點(diǎn)睛】此題主要考查了同底數(shù)冪的乘除法、冪的乘方和積的乘方,關(guān)鍵是掌握相關(guān)運(yùn)算法則.2、B【解析】試題分析:結(jié)合三個(gè)視圖發(fā)現(xiàn),應(yīng)該是由一個(gè)正方體在一個(gè)角上挖去一個(gè)小正方體,且小正方體的位置應(yīng)該在右上角,故選B.考點(diǎn):由三視圖判斷幾何體.3、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚(yú)竿轉(zhuǎn)過(guò)的角度是15°.故選C.考點(diǎn):解直角三角形的應(yīng)用.4、B【解析】
先根據(jù)二次根式的性質(zhì)化簡(jiǎn),再根據(jù)最簡(jiǎn)二次根式的定義判斷即可.【詳解】A選項(xiàng):,故不是最簡(jiǎn)二次根式,故A選項(xiàng)錯(cuò)誤;B選項(xiàng):是最簡(jiǎn)二次根式,故B選項(xiàng)正確;C選項(xiàng):,故不是最簡(jiǎn)二次根式,故本選項(xiàng)錯(cuò)誤;D選項(xiàng):,故不是最簡(jiǎn)二次根式,故D選項(xiàng)錯(cuò)誤;
故選:B.【點(diǎn)睛】考查了對(duì)最簡(jiǎn)二次根式的定義的理解,能理解最簡(jiǎn)二次根式的定義是解此題的關(guān)鍵.5、A【解析】
若比較M,N的大小關(guān)系,只需計(jì)算M-N的值即可.【詳解】解:∵M(jìn)=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.【點(diǎn)睛】本題的主要考查了比較代數(shù)式的大小,可以讓兩者相減再分析情況.6、C【解析】
根據(jù)分式和二次根式有意義的條件進(jìn)行計(jì)算即可.【詳解】由題意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范圍是x≥2且x≠2.故選C.【點(diǎn)睛】本題考查了函數(shù)自變量的取值范圍問(wèn)題,掌握分式和二次根式有意義的條件是解題的關(guān)鍵.7、C【解析】
連接AE,根據(jù)余弦的定義求出AB,根據(jù)勾股定理求出BC,根據(jù)直角三角形的性質(zhì)求出CD,根據(jù)面積公式出去AE,根據(jù)翻轉(zhuǎn)變換的性質(zhì)求出AF,根據(jù)勾股定理、三角形中位線(xiàn)定理計(jì)算即可.【詳解】解:連接AE,∵AC=3,cos∠CAB=,∴AB=3AC=9,由勾股定理得,BC==6,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),∴CD=AB=,S△ABC=×3×6=9,∵點(diǎn)D為AB的中點(diǎn),∴S△ACD=S△ABC=,由翻轉(zhuǎn)變換的性質(zhì)可知,S四邊形ACED=9,AE⊥CD,則×CD×AE=9,解得,AE=4,∴AF=2,由勾股定理得,DF==,∵AF=FE,AD=DB,∴BE=2DF=7,故選C.【點(diǎn)睛】本題考查的是翻轉(zhuǎn)變換的性質(zhì)、直角三角形的性質(zhì),翻轉(zhuǎn)變換是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.8、C【解析】
先求出的值,然后再利用算術(shù)平方根定義計(jì)算即可得到結(jié)果.【詳解】=4,4的算術(shù)平方根是2,所以的算術(shù)平方根是2,故選C.【點(diǎn)睛】本題考查了算術(shù)平方根,熟練掌握算術(shù)平方根的定義是解本題的關(guān)鍵.9、A【解析】
∵AB的中垂線(xiàn)交BC于D,AC的中垂線(xiàn)交BC于E,∴DA=DB,EA=EC,則△ADE的周長(zhǎng)=AD+DE+AE=BD+DE+EC=BC=8,故選A.10、A【解析】
連接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足為H,則CH=1,于是,S陰影=S△AOC+S扇形OCB,代入可得結(jié)論.【詳解】連接OT、OC,∵PT切⊙O于點(diǎn)T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M(jìn)是OP的中點(diǎn),∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH⊥AP,垂足為H,則CH=OC=1,S陰影=S△AOC+S扇形OCB=OA?CH+=1+,故選A.【點(diǎn)睛】本題考查了切線(xiàn)的性質(zhì):圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑.運(yùn)用切線(xiàn)的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線(xiàn)連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.也考查了等腰三角形的判定與性質(zhì)和含30度的直角三角形三邊的關(guān)系.11、B【解析】①當(dāng)頻數(shù)增大時(shí),頻率逐漸穩(wěn)定的值即為概率,500次的實(shí)驗(yàn)次數(shù)偏低,而頻率穩(wěn)定在了0.618,錯(cuò)誤;②由圖可知頻數(shù)穩(wěn)定在了0.618,所以估計(jì)頻率為0.618,正確;③.這個(gè)實(shí)驗(yàn)是一個(gè)隨機(jī)試驗(yàn),當(dāng)投擲次數(shù)為1000時(shí),釘尖向上”的概率不一定是0.1.錯(cuò)誤,故選B.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,能正確理解相關(guān)概念是解題的關(guān)鍵.12、C【解析】
由原拋物線(xiàn)與x軸的交點(diǎn)位于y軸的兩端,可排除A、D選項(xiàng);B、方程ax2+2x﹣1=0有兩個(gè)不等實(shí)根,且負(fù)根的絕對(duì)值大于正根的絕對(duì)值,B不符合題意;C、拋物線(xiàn)y=ax2與直線(xiàn)y=﹣2x+1的交點(diǎn),即交點(diǎn)的橫坐標(biāo)為方程ax2+2x﹣1=0的根,C符合題意.此題得解.【詳解】∵拋物線(xiàn)y=ax2+2x﹣1與x軸的交點(diǎn)位于y軸的兩端,∴A、D選項(xiàng)不符合題意;B、∵方程ax2+2x﹣1=0有兩個(gè)不等實(shí)根,且負(fù)根的絕對(duì)值大于正根的絕對(duì)值,∴B選項(xiàng)不符合題意;C、圖中交點(diǎn)的橫坐標(biāo)為方程ax2+2x﹣1=0的根(拋物線(xiàn)y=ax2與直線(xiàn)y=﹣2x+1的交點(diǎn)),∴C選項(xiàng)符合題意.故選:C.【點(diǎn)睛】本題考查了拋物線(xiàn)與x軸的交點(diǎn)以及二次函數(shù)的圖象與位置變化,逐一分析四個(gè)選項(xiàng)中的圖形是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】分析:根據(jù)菱形的性質(zhì)易得AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,再判定△ABD為等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AB=BD=8,從而得OB=4,在Rt△AOB中,根據(jù)勾股定理可得OA=4,繼而求得AC=2AO=,再由菱形的面積公式即可求得菱形ABCD的面積.詳解:∵菱形ABCD中,其周長(zhǎng)為32,∴AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,∵,∴△ABD為等邊三角形,∴AB=BD=8,∴OB=4,在Rt△AOB中,OB=4,AB=8,根據(jù)勾股定理可得OA=4,∴AC=2AO=,∴菱形ABCD的面積為:=.點(diǎn)睛:本題考查了菱形性質(zhì):1.菱形的四個(gè)邊都相等;2.菱形對(duì)角線(xiàn)相互垂直平分,并且每一組對(duì)角線(xiàn)平分一組對(duì)角;3.菱形面積公式=對(duì)角線(xiàn)乘積的一半.14、﹣2【解析】
連結(jié)AE,如圖1,先根據(jù)等腰直角三角形的性質(zhì)得到AB=AC=4,再根據(jù)圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點(diǎn)E在以AB為直徑的O上,于是當(dāng)點(diǎn)O、E、C共線(xiàn)時(shí),CE最小,如圖2,在Rt△AOC中利用勾股定理計(jì)算出OC=2,從而得到CE的最小值為2﹣2.【詳解】連結(jié)AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點(diǎn)E在以AB為直徑的O上,∵O的半徑為2,∴當(dāng)點(diǎn)O、E.C共線(xiàn)時(shí),CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線(xiàn)段CE長(zhǎng)度的最小值為2﹣2.故答案為:2﹣2.【點(diǎn)睛】此題考查等腰直角三角形的性質(zhì),圓周角定理,勾股定理,解題關(guān)鍵在于結(jié)合實(shí)際運(yùn)用圓的相關(guān)性質(zhì).15、210.【解析】
利用鄰補(bǔ)角的定義求出∠ABC+∠BCD,再利用四邊形內(nèi)角和定理求得∠A+∠D.【詳解】∵∠1+∠2=210°,∴∠ABC+∠BCD=180°×2﹣210°=150°,∴∠A+∠D=360°﹣150°=210°.故答案為:210.【點(diǎn)睛】本題考查了四邊形的內(nèi)角和定理以及鄰補(bǔ)角的定義,利用鄰補(bǔ)角的定義求出∠ABC+∠BCD是關(guān)鍵.16、y(y+4)(y﹣4)【解析】試題解析:原式故答案為點(diǎn)睛:提取公因式法和公式法相結(jié)合因式分解.17、1【解析】
根據(jù)已知他身上帶的錢(qián)恰好能買(mǎi)5張3D立體賀卡或20張普通賀卡得:1張3D立體賀卡的單價(jià)是1張普通賀卡單價(jià)的4倍,所以設(shè)1張3D立體賀卡x元,剩下的錢(qián)恰好還能買(mǎi)y張普通賀卡,根據(jù)3張3D立體賀卡張普通賀卡張3D立體賀卡,可得結(jié)論.【詳解】解:設(shè)1張3D立體賀卡x元,剩下的錢(qián)恰好還能買(mǎi)y張普通賀卡.
則1張普通賀卡為:元,
由題意得:,
,
答:剩下的錢(qián)恰好還能買(mǎi)1張普通賀卡.
故答案為:1.【點(diǎn)睛】本題考查了一元一次方程的應(yīng)用以及列代數(shù)式,解題的關(guān)鍵是:根據(jù)總價(jià)單價(jià)數(shù)量列式計(jì)算.18、﹣1<a<1【解析】
解:∵k>0,∴在圖象的每一支上,y隨x的增大而減小,①當(dāng)點(diǎn)(a-1,y1)、(a+1,y2)在圖象的同一支上,∵y1<y2,∴a-1>a+1,解得:無(wú)解;②當(dāng)點(diǎn)(a-1,y1)、(a+1,y2)在圖象的兩支上,∵y1<y2,∴a-1<0,a+1>0,解得:-1<a<1.故答案為:-1<a<1.【點(diǎn)睛】本題考查反比例函數(shù)的性質(zhì).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)
平均數(shù)(分)
中位數(shù)(分)
眾數(shù)(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成績(jī)好些(3)初中代表隊(duì)選手成績(jī)較為穩(wěn)定【解析】解:(1)填表如下:
平均數(shù)(分)
中位數(shù)(分)
眾數(shù)(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成績(jī)好些.∵兩個(gè)隊(duì)的平均數(shù)都相同,初中部的中位數(shù)高,∴在平均數(shù)相同的情況下中位數(shù)高的初中部成績(jī)好些.(3)∵,,∴<,因此,初中代表隊(duì)選手成績(jī)較為穩(wěn)定.(1)根據(jù)成績(jī)表加以計(jì)算可補(bǔ)全統(tǒng)計(jì)表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計(jì)意義回答.(2)根據(jù)平均數(shù)和中位數(shù)的統(tǒng)計(jì)意義分析得出即可.(3)分別求出初中、高中部的方差比較即可.20、(1)證明見(jiàn)解析;(2);(3)1.【解析】
(1)連接OM,如圖1,先證明OM∥BC,再根據(jù)等腰三角形的性質(zhì)判斷AE⊥BC,則OM⊥AE,然后根據(jù)切線(xiàn)的判定定理得到AE為⊙O的切線(xiàn);(2)設(shè)⊙O的半徑為r,利用等腰三角形的性質(zhì)得到BE=CE=BC=2,再證明△AOM∽△ABE,則利用相似比得到,然后解關(guān)于r的方程即可;(3)作OH⊥BE于H,如圖,易得四邊形OHEM為矩形,則HE=OM=,所以BH=BE-HE=,再根據(jù)垂徑定理得到BH=HG=,所以BG=1.【詳解】解:(1)證明:連接OM,如圖1,∵BM是∠ABC的平分線(xiàn),∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分線(xiàn),∴AE⊥BC,∴OM⊥AE,∴AE為⊙O的切線(xiàn);(2)解:設(shè)⊙O的半徑為r,∵AB=AC=6,AE是∠BAC的平分線(xiàn),∴BE=CE=BC=2,∵OM∥BE,∴△AOM∽△ABE,∴,即,解得r=,即設(shè)⊙O的半徑為;(3)解:作OH⊥BE于H,如圖,∵OM⊥EM,ME⊥BE,∴四邊形OHEM為矩形,∴HE=OM=,∴BH=BE﹣HE=2﹣=,∵OH⊥BG,∴BH=HG=,∴BG=2BH=1.21、(Ⅰ);(Ⅱ)①至少要購(gòu)進(jìn)20件甲商品;②售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是2800元.【解析】
(Ⅰ)根據(jù)總利潤(rùn)=(甲的售價(jià)-甲的進(jìn)價(jià))×甲的進(jìn)貨數(shù)量+(乙的售價(jià)-乙的進(jìn)價(jià))×乙的進(jìn)貨數(shù)量列關(guān)系式并化簡(jiǎn)即可得答案;(Ⅱ)①根據(jù)總成本最多投入8000元列不等式即可求出x的范圍,即可得答案;②根據(jù)一次函數(shù)的增減性確定其最大值即可.【詳解】(Ⅰ)根據(jù)題意得:則y與x的函數(shù)關(guān)系式為.(Ⅱ),解得.∴至少要購(gòu)進(jìn)20件甲商品.,∵,∴y隨著x的增大而減小∴當(dāng)時(shí),有最大值,.∴若售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是2800元.【點(diǎn)睛】本題考查一次函數(shù)的實(shí)際應(yīng)用及一元一次不等式的應(yīng)用,熟練掌握一次函數(shù)的性質(zhì)是解題關(guān)鍵.22、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點(diǎn)P的坐標(biāo)為P(﹣,﹣)或(0,5).【解析】
(1)將點(diǎn)A、B坐標(biāo)代入二次函數(shù)表達(dá)式,即可求出二次函數(shù)解析式;(2)①如圖1,過(guò)點(diǎn)P作y軸的平行線(xiàn)交BC于點(diǎn)G,將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:直線(xiàn)BC的表達(dá)式為:y=x+1,設(shè)點(diǎn)G(t,t+1),則點(diǎn)P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設(shè)直線(xiàn)BP與CD交于點(diǎn)H,當(dāng)點(diǎn)P在直線(xiàn)BC下方時(shí),求出線(xiàn)段BC的中點(diǎn)坐標(biāo)為(﹣,﹣),過(guò)該點(diǎn)與BC垂直的直線(xiàn)的k值為﹣1,求出直線(xiàn)BC中垂線(xiàn)的表達(dá)式為:y=﹣x﹣4…③,同理直線(xiàn)CD的表達(dá)式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點(diǎn)H(﹣2,﹣2),同理可得直線(xiàn)BH的表達(dá)式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點(diǎn);當(dāng)點(diǎn)P(P′)在直線(xiàn)BC上方時(shí),根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線(xiàn)BP′的表達(dá)式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點(diǎn)A、B坐標(biāo)代入二次函數(shù)表達(dá)式得:,解得:,故拋物線(xiàn)的表達(dá)式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點(diǎn)C(﹣1,0);(2)①如圖1,過(guò)點(diǎn)P作y軸的平行線(xiàn)交BC于點(diǎn)G,將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:直線(xiàn)BC的表達(dá)式為:y=x+1…②,設(shè)點(diǎn)G(t,t+1),則點(diǎn)P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當(dāng)t=﹣時(shí),其最大值為;②設(shè)直線(xiàn)BP與CD交于點(diǎn)H,當(dāng)點(diǎn)P在直線(xiàn)BC下方時(shí),∵∠PBC=∠BCD,∴點(diǎn)H在BC的中垂線(xiàn)上,線(xiàn)段BC的中點(diǎn)坐標(biāo)為(﹣,﹣),過(guò)該點(diǎn)與BC垂直的直線(xiàn)的k值為﹣1,設(shè)BC中垂線(xiàn)的表達(dá)式為:y=﹣x+m,將點(diǎn)(﹣,﹣)代入上式并解得:直線(xiàn)BC中垂線(xiàn)的表達(dá)式為:y=﹣x﹣4…③,同理直線(xiàn)CD的表達(dá)式為:y=2x+2…④,聯(lián)立③④并解得:x=﹣2,即點(diǎn)H(﹣2,﹣2),同理可得直線(xiàn)BH的表達(dá)式為:y=x﹣1…⑤,聯(lián)立①⑤并解得:x=﹣或﹣4(舍去﹣4),故點(diǎn)P(﹣,﹣);當(dāng)點(diǎn)P(P′)在直線(xiàn)BC上方時(shí),∵∠PBC=∠BCD,∴BP′∥CD,則直線(xiàn)BP′的表達(dá)式為:y=2x+s,將點(diǎn)B坐標(biāo)代入上式并解得:s=5,即直線(xiàn)BP′的表達(dá)式為:y=2x+5…⑥,聯(lián)立①⑥并解得:x=0或﹣4(舍去﹣4),故點(diǎn)P(0,5);故點(diǎn)P的坐標(biāo)為P(﹣,﹣)或(0,5).【點(diǎn)睛】本題考查的是二次函數(shù),熟練掌握拋物線(xiàn)的性質(zhì)是解題的關(guān)鍵.23、﹣9<x<1.【解析】
先求每一個(gè)不等式的解集,然后找出它們的公共部分,即可得出答案.【詳解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,則原不等式組的解集為﹣9<x<1.【點(diǎn)睛】此題考查了解一元一次不等式組,用到的知識(shí)點(diǎn)是解一元一次不等式組的步驟,關(guān)鍵是找出兩個(gè)不等式解集的公共部分.24、(1)詳見(jiàn)解析;(2)72°;(3)3【解析】
(1)由B類(lèi)型的人數(shù)及其百分比求得總?cè)藬?shù),在用總?cè)藬?shù)減去其余各組人數(shù)得出C類(lèi)型人數(shù),即可補(bǔ)全條形圖;(2)用360°乘以C類(lèi)別人數(shù)所占比例即可得;(3)用列表法或畫(huà)樹(shù)狀圖法列出所有等可能結(jié)果,從中確定恰好抽到一男一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【詳解】解:(1)∵抽查的總?cè)藬?shù)為:20÷40%=50(人)∴C類(lèi)人數(shù)為:50-5-20-15=10(人)補(bǔ)全條形統(tǒng)計(jì)圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數(shù)為:10(3)設(shè)男生為A1、A2,女生為B1、B畫(huà)樹(shù)狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用以及概率的求法,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?5、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標(biāo)為(﹣3,0)或(﹣3,).【解析】
(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線(xiàn)的表達(dá)式,再將E點(diǎn)坐標(biāo)代入表達(dá)式求出y的值即可;(3)①設(shè)直線(xiàn)BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達(dá)式求出D點(diǎn)坐標(biāo),當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),可得G點(diǎn)坐標(biāo),GF∥x軸,故可得F的縱坐標(biāo),再將y=﹣2代入拋物線(xiàn)的解析式求解可得點(diǎn)F的坐標(biāo),再根據(jù)m=FG即可得m的值;②設(shè)點(diǎn)F與點(diǎn)G的坐標(biāo),根據(jù)m=FG列出方程化簡(jiǎn)可得出m的二次函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的圖象可得m的取值范圍;(2)分別分析當(dāng)點(diǎn)F在x軸的左側(cè)時(shí)與右側(cè)時(shí)的兩種情況,根據(jù)△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設(shè)出F,G點(diǎn)的坐標(biāo),再根據(jù)兩點(diǎn)關(guān)系列出等式化簡(jiǎn)求解即可得F的坐標(biāo).【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線(xiàn)的表達(dá)式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點(diǎn)E的坐標(biāo)為(﹣4,﹣6).(3)①設(shè)直線(xiàn)BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線(xiàn)BD的表達(dá)式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),G的坐標(biāo)為(0,﹣2).∵GF∥x軸,∴F的縱坐標(biāo)為﹣2.將y=﹣2代入拋物線(xiàn)的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點(diǎn)F的坐標(biāo)為(﹣+3,﹣2).∴m=FG=﹣3.②設(shè)點(diǎn)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡(jiǎn)得,m=﹣x3+4,∵﹣<0,∴m有最大值,當(dāng)x=0時(shí),m的最大值為4.(2)當(dāng)點(diǎn)F在x軸的左側(cè)時(shí),如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點(diǎn)F的坐標(biāo)為(﹣3,0).當(dāng)點(diǎn)F在x軸的右側(cè)時(shí),如下圖所示:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度網(wǎng)絡(luò)安全拓展合作協(xié)議書(shū)范本3篇
- 課程設(shè)計(jì)自動(dòng)打標(biāo)機(jī)
- 二零二五年度廢塑料瓶回收處理及循環(huán)利用合同3篇
- 舞伴匹配課程設(shè)計(jì)
- 二零二五年度景區(qū)道路路燈安裝服務(wù)合同范本2篇
- 貨運(yùn)實(shí)訓(xùn)課程設(shè)計(jì)
- 苯酚丙酮課程設(shè)計(jì)
- 建筑公司安全技術(shù)措施管理制度(2篇)
- 2025年小學(xué)防溺水安全制度樣本(3篇)
- 2025年滬科新版九年級(jí)物理上冊(cè)階段測(cè)試試卷
- 給排水全套資料表格模版
- 萬(wàn)噸鈦白粉項(xiàng)目建議
- 簡(jiǎn)譜視唱15942
- 化妝品購(gòu)銷(xiāo)合同范本
- 7725i進(jìn)樣閥說(shuō)明書(shū)
- 銀監(jiān)會(huì)流動(dòng)資金貸款需求量測(cè)算表
- 榴園小學(xué)寒假留守兒童工作總結(jié)(共3頁(yè))
- 初中物理-電功率大題專(zhuān)項(xiàng)
- 時(shí)光科技主軸S系列伺服控制器說(shuō)明書(shū)
- 社會(huì)組織績(jī)效考核管理辦法
- 蘇州智能數(shù)控機(jī)床項(xiàng)目投資計(jì)劃書(shū)(模板)
評(píng)論
0/150
提交評(píng)論