湖南省婁底市名校2024屆中考數(shù)學(xué)押題卷含解析_第1頁
湖南省婁底市名校2024屆中考數(shù)學(xué)押題卷含解析_第2頁
湖南省婁底市名校2024屆中考數(shù)學(xué)押題卷含解析_第3頁
湖南省婁底市名校2024屆中考數(shù)學(xué)押題卷含解析_第4頁
湖南省婁底市名校2024屆中考數(shù)學(xué)押題卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖南省婁底市名校2024屆中考數(shù)學(xué)押題卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算(—2)2-3的值是()A、1B、2C、—1D、—22.在平面直角坐標(biāo)系中,有兩條拋物線關(guān)于x軸對稱,且他們的頂點(diǎn)相距10個單位長度,若其中一條拋物線的函數(shù)表達(dá)式為y=+6x+m,則m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或143.有一組數(shù)據(jù):3,4,5,6,6,則這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,64.將拋物線y=﹣(x+1)2+4平移,使平移后所得拋物線經(jīng)過原點(diǎn),那么平移的過程為()A.向下平移3個單位 B.向上平移3個單位C.向左平移4個單位 D.向右平移4個單位5.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.6.某射手在同一條件下進(jìn)行射擊,結(jié)果如下表所示:射擊次數(shù)(n)102050100200500……擊中靶心次數(shù)(m)8194492178451……擊中靶心頻率(mn0.800.950.880.920.890.90……由此表推斷這個射手射擊1次,擊中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.97.如圖,已知直線a∥b∥c,直線m,n與a,b,c分別交于點(diǎn)A,C,E,B,D,F(xiàn),若AC=4,CE=6,BD=3,則DF的值是()A.4 B.4.5 C.5 D.5.58.下列運(yùn)算結(jié)果正確的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.a(chǎn)(a+b)=a2+bD.6ab2÷2ab=3b9.一、單選題在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.10.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點(diǎn)P,則∠P=()A.90°-α B.90°+α C. D.360°-α二、填空題(共7小題,每小題3分,滿分21分)11.已知點(diǎn)P(2,3)在一次函數(shù)y=2x-m的圖象上,則m=_______.12.已知袋中有若干個小球,它們除顏色外其它都相同,其中只有2個紅球,若隨機(jī)從中摸出一個,摸到紅球的概率是,則袋中小球的總個數(shù)是_____13.把一張長方形紙條按如圖所示折疊后,若∠AOB′=70°,則∠B′OG=_____.14.圓錐體的底面周長為6π,側(cè)面積為12π,則該圓錐體的高為.15.如圖,E是?ABCD的邊AD上一點(diǎn),AE=1216.四邊形ABCD中,向量_____________.17.設(shè)[x)表示大于x的最小整數(shù),如[3)=4,[?1.2)=?1,則下列結(jié)論中正確的是______.(填寫所有正確結(jié)論的序號)①[0)=0;②[x)?x的最小值是0;③[x)?x的最大值是0;④存在實(shí)數(shù)x,使[x)?x=0.5成立.三、解答題(共7小題,滿分69分)18.(10分)如圖,甲、乙用4張撲克牌玩游戲,他倆將撲克牌洗勻后背面朝上,放置在桌面上,每人抽一張,甲先抽,乙后抽,抽出的牌不放回.甲、乙約定:只有甲抽到的牌面數(shù)字比乙大時甲勝;否則乙勝.請你用樹狀圖或列表法說明甲、乙獲勝的機(jī)會是否相同.19.(5分)試探究:小張在數(shù)學(xué)實(shí)踐活動中,畫了一個△ABC,∠ACB=90°,BC=1,AC=2,再以點(diǎn)B為圓心,BC為半徑畫弧交AB于點(diǎn)D,然后以A為圓心,AD長為半徑畫弧交AC于點(diǎn)E,如圖1,則AE=;此時小張發(fā)現(xiàn)AE2=AC?EC,請同學(xué)們驗(yàn)證小張的發(fā)現(xiàn)是否正確.拓展延伸:小張利用圖1中的線段AC及點(diǎn)E,構(gòu)造AE=EF=FC,連接AF,得到圖2,試完成以下問題:(1)求證:△ACF∽△FCE;(2)求∠A的度數(shù);(3)求cos∠A的值;應(yīng)用遷移:利用上面的結(jié)論,求半徑為2的圓內(nèi)接正十邊形的邊長.20.(8分)如圖1,已知直線l:y=﹣x+2與y軸交于點(diǎn)A,拋物線y=(x﹣1)2+m也經(jīng)過點(diǎn)A,其頂點(diǎn)為B,將該拋物線沿直線l平移使頂點(diǎn)B落在直線l的點(diǎn)D處,點(diǎn)D的橫坐標(biāo)n(n>1).(1)求點(diǎn)B的坐標(biāo);(2)平移后的拋物線可以表示為(用含n的式子表示);(3)若平移后的拋物線與原拋物線相交于點(diǎn)C,且點(diǎn)C的橫坐標(biāo)為a.①請寫出a與n的函數(shù)關(guān)系式.②如圖2,連接AC,CD,若∠ACD=90°,求a的值.21.(10分).22.(10分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點(diǎn),OA=4,點(diǎn)D為拋物線的頂點(diǎn),并且直線y=kx+b與該拋物線相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,B點(diǎn)的橫坐標(biāo)是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)是t,△PAB的面積是S,求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當(dāng)PB∥CD時,點(diǎn)Q是直線AB上一點(diǎn),若∠BPQ+∠CBO=180°,求Q點(diǎn)坐標(biāo).23.(12分)中央電視臺的“朗讀者”節(jié)目激發(fā)了同學(xué)們的讀書熱情,為了引導(dǎo)學(xué)生“多讀書,讀好書“,某校對八年級部分學(xué)生的課外閱讀量進(jìn)行了隨機(jī)調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:本數(shù)(本)頻數(shù)(人數(shù))頻率5a0.26180.1714b880.16合計50c我們定義頻率=,比如由表中我們可以知道在這次隨機(jī)調(diào)查中抽樣人數(shù)為50人課外閱讀量為6本的同學(xué)為18人,因此這個人數(shù)對應(yīng)的頻率就是=0.1.(1)統(tǒng)計表中的a、b、c的值;(2)請將頻數(shù)分布表直方圖補(bǔ)充完整;(3)求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù);(4)若該校八年級共有600名學(xué)生,你認(rèn)為根據(jù)以上調(diào)查結(jié)果可以估算分析該校八年級學(xué)生課外閱讀量為7本和8本的總?cè)藬?shù)為多少嗎?請寫出你的計算過程.24.(14分)在如圖的正方形網(wǎng)格中,每一個小正方形的邊長均為1.格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(﹣2,0),(﹣3,3).(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系,寫出點(diǎn)B的坐標(biāo);(2)把△ABC繞坐標(biāo)原點(diǎn)O順時針旋轉(zhuǎn)90°得到△A1B1C1,畫出△A1B1C1,寫出點(diǎn)B1的坐標(biāo);(3)以坐標(biāo)原點(diǎn)O為位似中心,相似比為2,把△A1B1C1放大為原來的2倍,得到△A2B2C2畫出△A2B2C2,使它與△AB1C1在位似中心的同側(cè);請在x軸上求作一點(diǎn)P,使△PBB1的周長最小,并寫出點(diǎn)P的坐標(biāo).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】本題考查的是有理數(shù)的混合運(yùn)算根據(jù)有理數(shù)的加法、乘方法則,先算乘方,再算加法,即得結(jié)果。解答本題的關(guān)鍵是掌握好有理數(shù)的加法、乘方法則。2、D【解析】

根據(jù)頂點(diǎn)公式求得已知拋物線的頂點(diǎn)坐標(biāo),然后根據(jù)軸對稱的性質(zhì)求得另一條拋物線的頂點(diǎn),根據(jù)題意得出關(guān)于m的方程,解方程即可求得.【詳解】∵一條拋物線的函數(shù)表達(dá)式為y=x2+6x+m,∴這條拋物線的頂點(diǎn)為(-3,m-9),∴關(guān)于x軸對稱的拋物線的頂點(diǎn)(-3,9-m),∵它們的頂點(diǎn)相距10個單位長度.∴|m-9-(9-m)|=10,∴2m-18=±10,當(dāng)2m-18=10時,m=1,當(dāng)2m-18=-10時,m=4,∴m的值是4或1.故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象與幾何變換,解答本題的關(guān)鍵是掌握二次函數(shù)的頂點(diǎn)坐標(biāo)公式,坐標(biāo)和線段長度之間的轉(zhuǎn)換,關(guān)于x軸對稱的點(diǎn)和拋物線的關(guān)系.3、C【解析】

解:在這一組數(shù)據(jù)中6是出現(xiàn)次數(shù)最多的,故眾數(shù)是6;而將這組數(shù)據(jù)從小到大的順序排列3,4,5,6,6,處于中間位置的數(shù)是5,平均數(shù)是:(3+4+5+6+6)÷5=4.8,故選C.【點(diǎn)睛】本題考查眾數(shù);算術(shù)平均數(shù);中位數(shù).4、A【解析】將拋物線平移,使平移后所得拋物線經(jīng)過原點(diǎn),若左右平移n個單位得到,則平移后的解析式為:,將(0,0)代入后解得:n=-3或n=1,所以向左平移1個單位或向右平移3個單位后拋物線經(jīng)過原點(diǎn);若上下平移m個單位得到,則平移后的解析式為:,將(0,0)代入后解得:m=-3,所以向下平移3個單位后拋物線經(jīng)過原點(diǎn),故選A.5、B【解析】試題分析:結(jié)合三個視圖發(fā)現(xiàn),應(yīng)該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應(yīng)該在右上角,故選B.考點(diǎn):由三視圖判斷幾何體.6、D【解析】

觀察表格的數(shù)據(jù)可以得到擊中靶心的頻率,然后用頻率估計概率即可求解.【詳解】依題意得擊中靶心頻率為0.90,估計這名射手射擊一次,擊中靶心的概率約為0.90.故選:D.【點(diǎn)睛】此題主要考查了利用頻率估計概率,首先通過實(shí)驗(yàn)得到事件的頻率,然后用頻率估計概率即可解決問題.7、B【解析】試題分析:根據(jù)平行線分線段成比例可得,然后根據(jù)AC=1,CE=6,BD=3,可代入求解DF=1.2.故選B考點(diǎn):平行線分線段成比例8、D【解析】

各項計算得到結(jié)果,即可作出判斷.【詳解】解:A、原式=2a,不符合題意;

B、原式=a2-2ab+b2,不符合題意;

C、原式=a2+ab,不符合題意;D、原式=3b,符合題意;

故選D【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.9、B【解析】

根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點(diǎn)睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點(diǎn);這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點(diǎn)與原點(diǎn)所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.10、C【解析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點(diǎn):1.多邊形內(nèi)角與外角2.三角形內(nèi)角和定理.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

根據(jù)待定系數(shù)法求得一次函數(shù)的解析式,解答即可.【詳解】解:∵一次函數(shù)y=2x-m的圖象經(jīng)過點(diǎn)P(2,3),∴3=4-m,解得m=1,故答案為:1.【點(diǎn)睛】此題主要考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,關(guān)鍵是根據(jù)待定系數(shù)法求得一次函數(shù)的解析式.12、8個【解析】

根據(jù)概率公式結(jié)合取出紅球的概率即可求出袋中小球的總個數(shù).【詳解】袋中小球的總個數(shù)是:2÷=8(個).故答案為8個.【點(diǎn)睛】本題考查了概率公式,根據(jù)概率公式算出球的總個數(shù)是解題的關(guān)鍵.13、55°【解析】

由翻折性質(zhì)得,∠BOG=∠B′OG,根據(jù)鄰補(bǔ)角定義可得.【詳解】解:由翻折性質(zhì)得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.故答案為55°.【點(diǎn)睛】考核知識點(diǎn):補(bǔ)角,折疊.14、【解析】試題分析:用周長除以2π即為圓錐的底面半徑;根據(jù)圓錐的側(cè)面積=×側(cè)面展開圖的弧長×母線長可得圓錐的母線長,利用勾股定理可得圓錐的高.試題解析:∵圓錐的底面周長為6π,∴圓錐的底面半徑為6π÷2π="3,"∵圓錐的側(cè)面積=×側(cè)面展開圖的弧長×母線長,∴母線長=2×12π÷6π="4,"∴這個圓錐的高是考點(diǎn):圓錐的計算.15、4【解析】∵AE=12ED,AE+ED=AD,∴ED=2∵四邊形ABCD是平行四邊形,∴AD=BC,AD//BC,∴△DEF∽△BCF,∴DF:BF=DE:BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案為4.16、【解析】分析:根據(jù)“向量運(yùn)算”的三角形法則進(jìn)行計算即可.詳解:如下圖所示,由向量運(yùn)算的三角形法則可得:==.故答案為.點(diǎn)睛:理解向量運(yùn)算的三角形法則是正確解答本題的關(guān)鍵.17、④【解析】

根據(jù)題意[x)表示大于x的最小整數(shù),結(jié)合各項進(jìn)行判斷即可得出答案.【詳解】①[0)=1,故本項錯誤;②[x)?x>0,但是取不到0,故本項錯誤;③[x)?x?1,即最大值為1,故本項錯誤;④存在實(shí)數(shù)x,使[x)?x=0.5成立,例如x=0.5時,故本項正確.故答案是:④.【點(diǎn)睛】此題考查運(yùn)算的定義,解題關(guān)鍵在于理解題意的運(yùn)算法則.三、解答題(共7小題,滿分69分)18、甲、乙獲勝的機(jī)會不相同.【解析】試題分析:先畫出樹狀圖列舉出所有情況,再分別算出甲、乙獲勝的概率,比較即可判斷.∴P∴甲、乙獲勝的機(jī)會不相同.考點(diǎn):可能性大小的判斷點(diǎn)評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握概率的求法,即可完成.19、(1)小張的發(fā)現(xiàn)正確;(2)詳見解析;(3)∠A=36°;(4)【解析】

嘗試探究:根據(jù)勾股定理計算即可;拓展延伸:(1)由AE2=AC?EC,推出,又AE=FC,推出,即可解問題;(2)利用相似三角形的性質(zhì)即可解決問題;(3)如圖,過點(diǎn)F作FM⊥AC交AC于點(diǎn)M,根據(jù)cos∠A=,求出AM、AF即可;應(yīng)用遷移:利用(3)中結(jié)論即可解決問題;【詳解】解:嘗試探究:﹣1;∵∠ACB=90°,BC=1,AC=2,∴AB=,∴AD=AE=,∵AE2=()2=6﹣2,AC?EC=2×[2﹣()]=6﹣,∴AE2=AC?EC,∴小張的發(fā)現(xiàn)正確;拓展延伸:(1)∵AE2=AC?EC,∴∵AE=FC,∴,又∵∠C=∠C,∴△ACF∽△FCE;(2)∵△ACF∽△FCE,∴∠AFC=∠CEF,又∵EF=FC,∴∠C=∠CEF,∴∠AFC=∠C,∴AC=AF,∵AE=EF,∴∠A=∠AFE,∴∠FEC=2∠A,∵EF=FC,∴∠C=2∠A,∵∠AFC=∠C=2∠A,∵∠AFC+∠C+∠A=180°,∴∠A=36°;(3)如圖,過點(diǎn)F作FM⊥AC交AC于點(diǎn)M,由嘗試探究可知AE=,EC=,∵EF=FC,由(2)得:AC=AF=2,∴ME=,∴AM=,∴cos∠A=;應(yīng)用遷移:∵正十邊形的中心角等于=36°,且是半徑為2的圓內(nèi)接正十邊形,∴如圖,當(dāng)點(diǎn)A是圓內(nèi)接正十邊形的圓心,AC和AF都是圓的半徑,F(xiàn)C是正十邊形的邊長時,設(shè)AF=AC=2,F(xiàn)C=EF=AE=x,∵△ACF∽△FCE,∴,∴,∴,∴半徑為2的圓內(nèi)接正十邊形的邊長為.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,學(xué)會利用數(shù)形結(jié)合的思想思考問題,屬于中考壓軸題.20、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.【解析】

1)首先求得點(diǎn)A的坐標(biāo),再求得點(diǎn)B的坐標(biāo),用h表示出點(diǎn)D的坐標(biāo)后代入直線的解析式即可驗(yàn)證答案。(2)①根據(jù)兩種不同的表示形式得到m和h之間的函數(shù)關(guān)系即可。②點(diǎn)C作y軸的垂線,垂足為E,過點(diǎn)D作DF⊥CE于點(diǎn)F,證得△ACE~△CDF,然后用m表示出點(diǎn)C和點(diǎn)D的坐標(biāo),根據(jù)相似三角形的性質(zhì)求得m的值即可?!驹斀狻拷猓海?)當(dāng)x=0時候,y=﹣x+2=2,∴A(0,2),把A(0,2)代入y=(x﹣1)2+m,得1+m=2∴m=1.∴y=(x﹣1)2+1,∴B(1,1)(2)由(1)知,該拋物線的解析式為:y=(x﹣1)2+1,∵∵D(n,2﹣n),∴則平移后拋物線的解析式為:y=(x﹣n)2+2﹣n.故答案是:y=(x﹣n)2+2﹣n.(3)①∵C是兩個拋物線的交點(diǎn),∴點(diǎn)C的縱坐標(biāo)可以表示為:(a﹣1)2+1或(a﹣n)2﹣n+2由題意得(a﹣1)2+1=(a﹣n)2﹣n+2,整理得2an﹣2a=n2﹣n∵n>1∴a==.②過點(diǎn)C作y軸的垂線,垂足為E,過點(diǎn)D作DF⊥CE于點(diǎn)F∵∠ACD=90°,∴∠ACE=∠CDF又∵∠AEC=∠DFC∴△ACE∽△CDF∴=.又∵C(a,a2﹣2a+2),D(2a,2﹣2a),∴AE=a2﹣2a,DF=m2,CE=CF=a∴=∴a2﹣2a=1解得:a=±+1∵n>1∴a=>∴a=+1【點(diǎn)睛】本題主要考查二次函數(shù)的應(yīng)用和相似三角形的判定與性質(zhì),需綜合運(yùn)用各知識求解。21、5﹣.【解析】

根據(jù)特殊角的三角函數(shù)值進(jìn)行計算即可.【詳解】原式==3﹣+4﹣2=5﹣.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)值,是基礎(chǔ)題目比較簡單.22、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;(3)Q(﹣,)【解析】

(1)根據(jù)題意可得A(-4,0)代入拋物線解析式可得a,求出拋物線解析式,根據(jù)B的橫坐標(biāo)可求B點(diǎn)坐標(biāo),把A,B坐標(biāo)代入直線解析式,可求k,b(2)過P點(diǎn)作PN⊥OA于N,交AB于M,過B點(diǎn)作BH⊥PN,設(shè)出P點(diǎn)坐標(biāo),可求出N點(diǎn)坐標(biāo),即可以用t表示S.(3)由PB∥CD,可求P點(diǎn)坐標(biāo),連接OP,交AC于點(diǎn)R,過P點(diǎn)作PN⊥OA于M,交AB于N,過D點(diǎn)作DT⊥OA于T,根據(jù)P的坐標(biāo),可得∠POA=45°,由OA=OC可得∠CAO=45°則PO⊥AB,根據(jù)拋物線的對稱性可知R在對稱軸上.設(shè)Q點(diǎn)坐標(biāo),根據(jù)△BOR∽△PQS,可求Q點(diǎn)坐標(biāo).【詳解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,當(dāng)x=﹣1時,y=﹣1+4=3,∴B(﹣1,3),將A(﹣4,0)B(﹣1,3)代入函數(shù)解析式,得,解得,直線AB的解析式為y=x+4,∴k=1、a=2、b=4;(2)過P點(diǎn)作PN⊥OA于N,交AB于M,過B點(diǎn)作BH⊥PN,如圖1,由(1)知直線AB是y=x+4,拋物線是y=﹣x2﹣4x,∴當(dāng)x=t時,yP=﹣t2﹣4t,yN=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,化簡,得s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,當(dāng)x=﹣2時,y=4即D(﹣2,4),當(dāng)x=0時,y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).當(dāng)y=3時,x=﹣3,∴P(﹣3,3),連接OP,交AC于點(diǎn)R,過P點(diǎn)作PN⊥OA于M,交AB于N,過D點(diǎn)作DT⊥OA于T,如圖2,可證R在DT上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC,∠AOC=90°∴∠PBR

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論