版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省徐州、連云港、宿遷三市2023-2024學(xué)年高三(最后沖刺)數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.2.設(shè)函數(shù),則函數(shù)的圖像可能為()A. B. C. D.3.若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,則實數(shù)a為()A. B.2 C. D.4.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.5.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.6.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.1807.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學(xué)院、國防大學(xué)、國防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國防科技大學(xué)的是研究生.則丙是來自哪個院校的,學(xué)位是什么()A.國防大學(xué),研究生 B.國防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國防科技大學(xué),研究生8.在中,,,,若,則實數(shù)()A. B. C. D.9.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.10.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當(dāng)點C到平面ABE的距離最大時,該四棱錐的體積為()A. B. C. D.111.若為純虛數(shù),則z=()A. B.6i C. D.2012.若實數(shù)、滿足,則的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知命題:,,那么是__________.14.已知等比數(shù)列滿足公比,為其前項和,,,構(gòu)成等差數(shù)列,則_______.15.在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_________.16.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當(dāng)三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.18.(12分)近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:患心肺疾病不患心肺疾病合計男女合計已知在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為.(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為患心肺疾病與性別有關(guān)?請說明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進(jìn)行問卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.下面的臨界值表供參考:(參考公式,其中)19.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.20.(12分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個觀景噴泉,觀景噴泉的示意圖如圖所示,兩點為噴泉,圓心為的中點,其中米,半徑米,市民可位于水池邊緣任意一點處觀賞.(1)若當(dāng)時,,求此時的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時要求市民在水池邊緣任意一點處觀賞噴泉時,觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù)),以原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;(Ⅱ)已知直線與曲線交于,兩點,與軸交于點,求.22.(10分)第7屆世界軍人運(yùn)動會于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個大項,329個小項.共有來自100多個國家的近萬名現(xiàn)役軍人同臺競技.前期為迎接軍運(yùn)會順利召開,武漢市很多單位和部門都開展了豐富多彩的宣傳和教育活動,努力讓大家更多的了解軍運(yùn)會的相關(guān)知識,并倡議大家做文明公民.武漢市體育局為了解廣大民眾對軍運(yùn)會知識的知曉情況,在全市開展了網(wǎng)上問卷調(diào)查,民眾參與度極高,現(xiàn)從大批參與者中隨機(jī)抽取200名幸運(yùn)參與者,他們得分(滿分100分)數(shù)據(jù),統(tǒng)計結(jié)果如下:組別頻數(shù)5304050452010(1)若此次問卷調(diào)查得分整體服從正態(tài)分布,用樣本來估計總體,設(shè),分別為這200人得分的平均值和標(biāo)準(zhǔn)差(同一組數(shù)據(jù)用該區(qū)間中點值作為代表),求,的值(,的值四舍五入取整數(shù)),并計算;(2)在(1)的條件下,為感謝大家參與這次活動,市體育局還對參加問卷調(diào)查的幸運(yùn)市民制定如下獎勵方案:得分低于的可以獲得1次抽獎機(jī)會,得分不低于的可獲得2次抽獎機(jī)會,在一次抽獎中,抽中價值為15元的紀(jì)念品A的概率為,抽中價值為30元的紀(jì)念品B的概率為.現(xiàn)有市民張先生參加了此次問卷調(diào)查并成為幸運(yùn)參與者,記Y為他參加活動獲得紀(jì)念品的總價值,求Y的分布列和數(shù)學(xué)期望,并估算此次紀(jì)念品所需要的總金額.(參考數(shù)據(jù):;;.)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個命題的真假即可.【詳解】如圖;連接相關(guān)點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.【點睛】本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.2、B【解析】
根據(jù)函數(shù)為偶函數(shù)排除,再計算排除得到答案.【詳解】定義域為:,函數(shù)為偶函數(shù),排除,排除故選【點睛】本題考查了函數(shù)圖像,通過函數(shù)的單調(diào)性,奇偶性,特殊值排除選項是常用的技巧.3、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由實部為求得值.【詳解】解:在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,,即.故選D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.4、D【解析】
取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.5、A【解析】
設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運(yùn)算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運(yùn)算性質(zhì)的應(yīng)用,考查計算能力,屬于中等題.6、A【解析】
因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數(shù)列前項和,解題關(guān)鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.7、C【解析】
根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來自軍事科學(xué)院;由②來自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點睛】本題考查了合情推理的簡單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.8、D【解析】
將、用、表示,再代入中計算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算,是一道中檔題.9、A【解析】
是函數(shù)的零點,根據(jù)五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對稱性.函數(shù)的零點就是其圖象對稱中心的橫坐標(biāo).10、B【解析】
過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設(shè),將表示成關(guān)于的函數(shù),再求函數(shù)的最值,即可得答案.【詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,,所以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設(shè),則,.因為,所以,所以,當(dāng)時,等號成立.此時EH與ED重合,所以,.故選:B.【點睛】本題考查空間中點到面的距離的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查空間想象能力和運(yùn)算求解能力,求解時注意輔助線及面面垂直的應(yīng)用.11、C【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時故選:C.【點睛】本題考查復(fù)數(shù)的概念與運(yùn)算,屬基礎(chǔ)題.12、D【解析】
根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點,由得,平移直線,當(dāng)該直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、真命題【解析】
由冪函數(shù)的單調(diào)性進(jìn)行判斷即可.【詳解】已知命題:,,因為在上單調(diào)遞增,則,所以是真命題,故答案為:真命題【點睛】本題主要考查了判斷全稱命題的真假,屬于基礎(chǔ)題.14、0【解析】
利用等差中項以及等比數(shù)列的前項和公式即可求解.【詳解】由,,是等差數(shù)列可知因為,所以,故答案為:0【點睛】本題考查了等差中項的應(yīng)用、等比數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.15、【解析】
由中位線定理和正方體性質(zhì)得,從而作出異面直線所成的角,在三角形中計算可得.【詳解】如圖,連接,,,∵分別為棱的中點,∴,又正方體中,即是平行四邊形,∴,∴,(或其補(bǔ)角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.【點睛】本題考查異面直線所成的角,解題關(guān)鍵是根據(jù)定義作出異面直線所成的角.16、【解析】
根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設(shè)出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關(guān)系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點作面,垂足為,過點作交于點,連接.則為二面角的平面角的補(bǔ)角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點.設(shè),.∴.故三棱錐的體積為當(dāng)且僅當(dāng)時,,即.∴三點共線.設(shè)三棱錐的外接球的球心為,半徑為.過點作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運(yùn)用,基本不等式的應(yīng)用,以及球的幾何性質(zhì)的應(yīng)用,意在考查學(xué)生的直觀想象能力,數(shù)學(xué)運(yùn)算能力和邏輯推理能力,屬于較難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)將轉(zhuǎn)化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而可得,即,即可證出.【詳解】函數(shù)的定義域為,因為對任意恒成立,即對任意恒成立,令,則,當(dāng)時,,故在上單調(diào)遞增,又,所以當(dāng)時,,不符合題意;當(dāng)時,令得,當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以要使在時恒成立,則只需,即,令,,所以,當(dāng)時,;當(dāng)時,,所以在單調(diào)遞減,在上單調(diào)遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當(dāng),時,即在上單調(diào)遞增;又,,所以,使得,當(dāng)時,;當(dāng)時,,即在上單調(diào)遞減,在上單調(diào)遞增,且所以,即,所以,即.【點睛】本題主要考查利用導(dǎo)數(shù)法求函數(shù)的最值及恒成立問題處理方法,第(2)問通過最值問題深化對函數(shù)的單調(diào)性的考查,同時考查轉(zhuǎn)化與化歸的思想,屬于中檔題.18、(1)列聯(lián)表見解析,有的把握認(rèn)為患心肺疾病與性別有關(guān),理由見解析;(2).【解析】
(1)結(jié)合題意完善列聯(lián)表,計算出的觀測值,對照臨界值表可得出結(jié)論;(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業(yè)”所包含的基本事件數(shù),利用古典概型的概率公式可取得所求事件的概率.【詳解】(1)由于在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數(shù)為人,故可將列聯(lián)表補(bǔ)充如下:患心肺疾病不患心肺疾病合計男女合計.故有的把握認(rèn)為患心肺疾病與性別有關(guān);(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、.從中選取三人共有以下種情形:、、、、、、、、、.其中至少有一位從事的是戶外作業(yè)的有種情形,分別為:、、、、、、、、,所以所選的人中至少有一位從事的是戶外作業(yè)的概率為.【點睛】本題考查利用獨立性檢驗的基本思想解決實際問題,同時也考查了利用列舉法求解古典概型的概率問題,考查計算能力,屬于中等題.19、(1)見解析(2)見解析【解析】
(1)取的中點D,連結(jié),.根據(jù)線面平行的判定定理即得;(2)先證,,和都是平面內(nèi)的直線且交于點,由(1)得,再結(jié)合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結(jié),.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,,.又,平面,平面,平面.【點睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.20、(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當(dāng)觀賞角度的最大時,取得最小值.在中,由余弦定理可得,因為的最大值不小于,所以,解得,經(jīng)驗證知,所以.即兩處噴泉間距離的最小值為.【點睛】本題考查解三角形在實際中的應(yīng)用,解題時要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進(jìn)行求解.解題時要注
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年規(guī)范化工程維修協(xié)議樣本
- 2024年度防火涂料施工承包協(xié)議
- 2024公司股東股權(quán)轉(zhuǎn)讓協(xié)議
- 2024商業(yè)合作協(xié)議模板
- 2024屆安徽省阜陽市第一中學(xué)高三高考全真模擬卷(七)數(shù)學(xué)試題
- 2024年專業(yè)建材購銷協(xié)議格式
- 2023-2024學(xué)年重慶一中高三招生統(tǒng)考(二)數(shù)學(xué)試題模擬試卷
- 2024年幼兒照護(hù)服務(wù)協(xié)議范例
- 2024專業(yè)不銹鋼定制加工協(xié)議范本
- 2024定制大客車租賃業(yè)務(wù)協(xié)議
- 十二指腸潰瘍伴穿孔的護(hù)理查房
- 市場營銷策劃(本)-形考任務(wù)三(第八~十章)-國開(CQ)-參考資料
- 中信證券測評真題答案大全
- 部編版小學(xué)六年級道德與法治上冊全冊知識點匯編
- 數(shù)字時代的數(shù)字化政府
- 文旅推廣短片策劃方案相關(guān)7篇
- 2023-2024學(xué)年高中主題班會燃激情之烈火拓青春之華章 課件
- 中醫(yī)藥文化進(jìn)校園-中醫(yī)藥健康伴我行課件
- 市政管道開槽施工-市政排水管道的施工
- 居住建筑戶型分析
- 機(jī)電一體化職業(yè)生涯
評論
0/150
提交評論