版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省東莞市重點中學2024屆畢業(yè)升學考試模擬卷數學卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列四個幾何體中,左視圖為圓的是()A. B. C. D.2.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.3.2017年人口普查顯示,河南某市戶籍人口約為2536000人,則該市戶籍人口數據用科學記數法可表示為()A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人4.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm25.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數y=(k<0)的圖象經過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣366.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.7.如圖是某零件的示意圖,它的俯視圖是()A. B. C. D.8.已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點B逆時針旋轉,使ON邊與BC邊重合,完成第一次旋轉;再繞點C逆時針旋轉,使MN邊與CD邊重合,完成第二次旋轉;……在這樣連續(xù)6次旋轉的過程中,點B,O間的距離不可能是()A.0 B.0.8 C.2.5 D.3.49.下列運算正確的是(
)A.a2·a3﹦a6
B.a3+a3﹦a6
C.|-a2|﹦a2
D.(-a2)3﹦a610.二次函數的圖象如圖所示,則反比例函數與一次函數在同一坐標系中的大致圖象是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.一個凸邊形的內角和為720°,則這個多邊形的邊數是__________________12.若代數式有意義,則實數x的取值范圍是____.13.我國古代有這樣一道數學問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點A處纏繞而上,繞五周后其末端恰好到達點B處,則問題中葛藤的最短長度是尺.
14.如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=10,AC=6,則DF的長為__.15.如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=34,有以下的結論:①△ADE∽△ACD;②當CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤16.分解因式:3ax2﹣3ay2=_____.17.為了綠化校園,30名學生共種78棵樹苗,其中男生每人種3棵,女生每人種2棵,設男生有x人,女生有y人,根據題意,所列方程組正確的是()A. B. C. D.三、解答題(共7小題,滿分69分)18.(10分)某商場以每件30元的價格購進一種商品,試銷中發(fā)現這種商品每天的銷售量m(件)與每件的銷售價x(元)滿足一次函數關系m=162﹣3x.請寫出商場賣這種商品每天的銷售利潤y(元)與每件銷售價x(元)之間的函數關系式.商場每天銷售這種商品的銷售利潤能否達到500元?如果能,求出此時的銷售價格;如果不能,說明理由.19.(5分)如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.求證:AE與⊙O相切于點A;若AE∥BC,BC=2,AC=2,求AD的長.20.(8分)如圖,己知AB是⊙C的直徑,C為圓上一點,D是BC的中點,CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯結EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求21.(10分)為評估九年級學生的體育成績情況,某校九年級500名學生全部參加了“中考體育模擬考試”,隨機抽取了部分學生的測試成績作為樣本,并繪制出如下兩幅不完整的統(tǒng)計表和頻數分布直方圖:成績x分人數頻率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名學生的成績;(2)通過計算將頻數分布直方圖補充完整;(3)若測試成績不低于40分為優(yōu)秀,請估計本次測試九年級學生中成績優(yōu)秀的人數.22.(10分)一個不透明的口袋中裝有2個紅球、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.23.(12分)先化簡,再求值:(x﹣3)÷(﹣1),其中x=﹣1.24.(14分)拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.求此拋物線的解析式;已知點D在第四象限的拋物線上,求點D關于直線BC對稱的點D’的坐標;在(2)的條件下,連結BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.【點睛】錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.2、B【解析】
先根據翻折變換的性質得到△DEF≌△AEF,再根據等腰三角形的性質及三角形外角的性質可得到∠BED=CDF,設CD=1,CF=x,則CA=CB=2,再根據勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質、等腰直角三角形的性質、勾股定理、三角形外角的性質,涉及面較廣,但難易適中.3、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】2536000人=2.536×106人.故選C.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.4、C【解析】圓錐的側面積=底面周長×母線長÷2,把相應數值代入,圓錐的側面積=2π×2×5÷2=10π.故答案為C5、B【解析】
解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數y=(k<0)的圖象經過點B,∴﹣4=,得k=﹣32.故選B.【點睛】本題主要考查菱形的性質和用待定系數法求反函數的系數,解此題的關鍵在于根據A點坐標求得OA的長,再根據菱形的性質求得B點坐標,然后用待定系數法求得反函數的系數即可.6、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內角和定理等知識,解題的關鍵是記住扇形的面積公式:S=.7、C【解析】
物體的俯視圖,即是從上面看物體得到的結果;根據三視圖的定義,從上面看物體可以看到是一個正六邊形,里面是一個沒有圓心的圓,由此可以確定答案.【詳解】從上面看是一個正六邊形,里面是一個沒有圓心的圓.故答案選C.【點睛】本題考查了幾何體的三視圖,解題的關鍵是熟練的掌握幾何體三視圖的定義.8、D【解析】
如圖,點O的運動軌跡是圖在黃線,點B,O間的距離d的最小值為0,最大值為線段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判斷;【詳解】如圖,點O的運動軌跡是圖在黃線,作CH⊥BD于點H,∵六邊形ABCDE是正六邊形,∴∠BCD=120o,∴∠CBH=30o,∴BH=cos30o·BC=,∴BD=.∵DK=,∴BK=,點B,O間的距離d的最小值為0,最大值為線段BK=,∴0≤d≤,即0≤d≤3.1,故點B,O間的距離不可能是3.4,故選:D.【點睛】本題考查正多邊形與圓、旋轉變換等知識,解題的關鍵是正確作出點O的運動軌跡,求出點B,O間的距離的最小值以及最大值是解答本題的關鍵.9、C【解析】
根據同底數冪相乘,底數不變指數相加;合并同類項,只把系數相加減,字母與字母的次數不變;同底數冪相除,底數不變指數相減,對各選項計算后利用排除法求解.【詳解】a2·a3﹦a5,故A項錯誤;a3+a3﹦2a3,故B項錯誤;a3+a3﹦-a6,故D項錯誤,選C.【點睛】本題考查同底數冪加減乘除及乘方,解題的關鍵是清楚運算法則.10、D【解析】
根據拋物線和直線的關系分析.【詳解】由拋物線圖像可知,所以反比例函數應在二、四象限,一次函數過原點,應在二、四象限.故選D【點睛】考核知識點:反比例函數圖象.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
設這個多邊形的邊數是n,根據多邊形的內角和公式:,列方程計算即可.【詳解】解:設這個多邊形的邊數是n根據多邊形內角和公式可得解得.故答案為:1.【點睛】此題考查的是根據多邊形的內角和,求邊數,掌握多邊形內角和公式是解決此題的關鍵.12、x≠﹣5.【解析】
根據分母不為零分式有意義,可得答案.【詳解】由題意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【點睛】本題考查了分式有意義的條件,利用分母不為零分式有意義得出不等式是解題關鍵.13、1.【解析】試題分析:這種立體圖形求最短路徑問題,可以展開成為平面內的問題解決,展開后可轉化下圖,所以是直角三角形求斜邊的問題,根據勾股定理可求出葛藤長為=1(尺).故答案為1.考點:平面展開最短路徑問題14、1【解析】
試題分析:如圖,延長CF交AB于點G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵點D是BC中點,∴DF是△CBG的中位線.∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.15、②③.【解析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結論為:②③.考點:1.相似三角形的判定與性質;2.全等三角形的判定與性質.16、3a(x+y)(x-y)【解析】
解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【點睛】本題考查提公因式法與公式法的綜合運用.17、A【解析】
該班男生有x人,女生有y人.根據題意得:,故選D.考點:由實際問題抽象出二元一次方程組.三、解答題(共7小題,滿分69分)18、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商場每天銷售這種商品的銷售利潤不能達到500元.【解析】
(1)此題可以按等量關系“每天的銷售利潤=(銷售價﹣進價)×每天的銷售量”列出函數關系式,并由售價大于進價,且銷售量大于零求得自變量的取值范圍.(2)根據(1)所得的函數關系式,利用配方法求二次函數的最值即可得出答案.【詳解】(1)由題意得:每件商品的銷售利潤為(x﹣2)元,那么m件的銷售利潤為y=m(x﹣2).又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.∵x﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求關系式為y=﹣3x2+252x﹣1(2≤x≤54).(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售價定為42元時獲得的利潤最大,最大銷售利潤是432元.∵500>432,∴商場每天銷售這種商品的銷售利潤不能達到500元.【點睛】本題考查了二次函數在實際生活中的應用,解答本題的關鍵是根據等量關系:“每天的銷售利潤=(銷售價﹣進價)×每天的銷售量”列出函數關系式,另外要熟練掌握二次函數求最值的方法.19、(1)證明見解析;(2)AD=2.【解析】
(1)如圖,連接OA,根據同圓的半徑相等可得:∠D=∠DAO,由同弧所對的圓周角相等及已知得:∠BAE=∠DAO,再由直徑所對的圓周角是直角得:∠BAD=90°,可得結論;(2)先證明OA⊥BC,由垂徑定理得:,FB=BC,根據勾股定理計算AF、OB、AD的長即可.【詳解】(1)如圖,連接OA,交BC于F,則OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直徑,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE與⊙O相切于點A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【點睛】本題考查了圓的切線的判定、勾股定理及垂徑定理的應用,屬于基礎題,熟練掌握切線的判定方法是關鍵:有切線時,常?!坝龅角悬c連圓心得半徑,證垂直”.20、(1)證明見解析;(2)EH=【解析】
(1)由題意推出∠EHB=∠OCB,(2)結合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點睛】本題考查的知識點是圓與相似三角形,解題的關鍵是熟練的掌握圓與相似三角形.21、(1)50;(2)詳見解析;(3)220.【解析】
(1)利用1組的人數除以1組的頻率可求此次抽查了多少名學生的成績;(2)根據總數乘以3組的頻率可求a,用50減去其它各組的頻數即可求得b的值,再用1減去其它各組的頻率即可求得c的值,即可把頻數分布直方圖補充完整;(3)先得到成績優(yōu)秀的頻率,再乘以500即可求解.【詳解】解:(1)4÷0.08=50(名).答:此次抽查了50名學生的成績;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如圖所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次測試九年級學生中成績優(yōu)秀的人數是220名.【點睛】本題主要考查數據的收集、處理以及統(tǒng)計圖表。22、【解析】分析:列表得出所有等可能的情況數,找出兩次都摸到紅球的情況數,即可求出所求的概率.詳解:列表如下:紅紅白黑紅﹣﹣﹣(紅,紅)(白,紅)(黑,紅)紅(紅,紅)﹣﹣﹣(白,紅)(黑,紅)白(紅,白)(紅,白)﹣﹣﹣(黑,白)黑(紅,黑)(紅,黑)(白,黑)﹣﹣﹣所有等可能的情況有12種,其中兩次都摸到紅球有2種可能,則P(兩次摸到紅球)==.點睛:此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.23、﹣x+1,2.【解析】
先將括號內的分式通分,再將乘方轉化為乘法,約分,最后代入數值求解即可.【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:巨災指數保險調節(jié)下政府應急物資采儲策略優(yōu)化研究
- 課題申報參考:教育強國與新質生產力研究
- 2025年度個人屋頂光伏安裝合同范本3篇
- 2025年塔城b2考貨運資格證要多久
- 2025個人蝦池承包養(yǎng)殖資源整合與開發(fā)合同3篇
- 十佳書香家庭事跡
- 二零二五版智能農業(yè)監(jiān)測系統(tǒng)采購合同提升農業(yè)效率4篇
- 二零二五學校與家長聯合實施家校共育行動計劃3篇
- 2025年度北京商品房買賣合同(含智能家居系統(tǒng)升級承諾)3篇
- 2025年個人間信息保密與責任承擔協(xié)議書3篇
- 2024版?zhèn)€人私有房屋購買合同
- 2024爆炸物運輸安全保障協(xié)議版B版
- 2025年度軍人軍事秘密保護保密協(xié)議與信息安全風險評估合同3篇
- 《食品與食品》課件
- 讀書分享會《白夜行》
- 光伏工程施工組織設計
- DB4101-T 121-2024 類家庭社會工作服務規(guī)范
- 化學纖維的鑒別與測試方法考核試卷
- 2024-2025學年全國中學生天文知識競賽考試題庫(含答案)
- 自動駕駛汽車道路交通安全性探討研究論文
- 術后譫妄及護理
評論
0/150
提交評論