版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省廬江縣六校聯(lián)盟2024年高三最后一模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.2.函數(shù)在上的圖象大致為()A. B.C. D.3.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A. B. C. D.4.復數(shù)的共軛復數(shù)記作,已知復數(shù)對應復平面上的點,復數(shù):滿足.則等于()A. B. C. D.5.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.6.已知三棱錐中,為的中點,平面,,,則有下列四個結論:①若為的外心,則;②若為等邊三角形,則;③當時,與平面所成的角的范圍為;④當時,為平面內一動點,若OM∥平面,則在內軌跡的長度為1.其中正確的個數(shù)是().A.1 B.1 C.3 D.47.對于任意,函數(shù)滿足,且當時,函數(shù).若,則大小關系是()A. B. C. D.8.已知全集,則集合的子集個數(shù)為()A. B. C. D.9.函數(shù)的一個零點在區(qū)間內,則實數(shù)a的取值范圍是()A. B. C. D.10.設全集,集合,,則()A. B. C. D.11.已知變量,滿足不等式組,則的最小值為()A. B. C. D.12.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某大學、、、四個不同的專業(yè)人數(shù)占本校總人數(shù)的比例依次為、、、,現(xiàn)欲采用分層抽樣的方法從這四個專業(yè)的總人數(shù)中抽取人調查畢業(yè)后的就業(yè)情況,則專業(yè)應抽取_________人.14.定義,已知,,若恰好有3個零點,則實數(shù)的取值范圍是________.15.在中,內角所對的邊分別是,若,,則__________.16.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角的對邊分別為,已知.(1)求的大小;(2)若,求面積的最大值.18.(12分)設數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.19.(12分)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的參數(shù)方程是(為參數(shù),常數(shù)),曲線的極坐標方程是.(1)寫出的普通方程及的直角坐標方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點,求直線的極坐標方程.20.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.21.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.22.(10分)已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).(1)求實數(shù)的值;(2)用表示中的最小值,設函數(shù),若函數(shù)為增函數(shù),求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數(shù)量積的運算和模的計算,屬基礎題。2、A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應用,屬于基礎題.3、A【解析】
首先求得時,的取值范圍.然后求得時,的單調性和零點,令,根據(jù)“時,的取值范圍”得到,利用零點存在性定理,求得函數(shù)的零點所在區(qū)間.【詳解】當時,.當時,為增函數(shù),且,則是唯一零點.由于“當時,.”,所以令,得,因為,,所以函數(shù)的零點所在區(qū)間為.故選:A【點睛】本小題主要考查分段函數(shù)的性質,考查符合函數(shù)零點,考查零點存在性定理,考查函數(shù)的單調性,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.4、A【解析】
根據(jù)復數(shù)的幾何意義得出復數(shù),進而得出,由得出可計算出,由此可計算出.【詳解】由于復數(shù)對應復平面上的點,,則,,,因此,.故選:A.【點睛】本題考查復數(shù)模的計算,考查了復數(shù)的坐標表示、共軛復數(shù)以及復數(shù)的除法,考查計算能力,屬于基礎題.5、B【解析】
作出不等式組對應的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結合即可得到的最小值.【詳解】解:作出不等式組對應的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.6、C【解析】
由線面垂直的性質,結合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質可判斷②錯誤;由線面角的定義和轉化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設與平面所成角為可得,設到平面的距離為由可得即有,當且僅當取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點睛】此題考查立體幾何中與點、線、面位置關系有關的命題的真假判斷,處理這類問題,可以用已知的定理或性質來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.7、A【解析】
由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數(shù)滿足,因為函數(shù)關于點對稱,當時,是單調增函數(shù),所以在定義域上是單調增函數(shù).因為,所以,.故選:A.【點睛】本題考查利用函數(shù)性質比較函數(shù)值的大小,解題的關鍵要掌握函數(shù)對稱性的代數(shù)形式,屬于中檔題..8、C【解析】
先求B.再求,求得則子集個數(shù)可求【詳解】由題=,則集合,故其子集個數(shù)為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關鍵,是基礎題9、C【解析】
顯然函數(shù)在區(qū)間內連續(xù),由的一個零點在區(qū)間內,則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內連續(xù),因為的一個零點在區(qū)間內,所以,即,解得,故選:C【點睛】本題考查零點存在性定理的應用,屬于基礎題.10、D【解析】
求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.11、B【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應圖形如下:可知點,,在處有最小值,最小值為.故選:B.【點睛】本題主要考查簡單的線性規(guī)劃,運用了數(shù)形結合的方法,屬于基礎題.12、B【解析】
由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質,即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質:或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出專業(yè)人數(shù)在、、、四個專業(yè)總人數(shù)的比例后可得.【詳解】由題意、、、四個不同的專業(yè)人數(shù)的比例為,故專業(yè)應抽取的人數(shù)為.故答案為:1.【點睛】本題考查分層抽樣,根據(jù)分層抽樣的定義,在各層抽取樣本數(shù)量是按比例抽取的.14、【解析】
根據(jù)題意,分類討論求解,當時,根據(jù)指數(shù)函數(shù)的圖象和性質無零點,不合題意;當時,令,得,令,得或,再分當,兩種情況討論求解.【詳解】由題意得:當時,在軸上方,且為增函數(shù),無零點,至多有兩個零點,不合題意;當時,令,得,令,得或,如圖所示:當時,即時,要有3個零點,則,解得;當時,即時,要有3個零點,則,令,,所以在是減函數(shù),又,要使,則須,所以.綜上:實數(shù)的取值范圍是.故答案為:【點睛】本題主要考查二次函數(shù),指數(shù)函數(shù)的圖象和分段函數(shù)的零點問題,還考查了分類討論的思想和運算求解的能力,利用導數(shù)判斷函數(shù)單調性,屬于中檔題.15、【解析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點睛】本小題主要考查正弦定理解三角形,考查同角三角函數(shù)的基本關系式,考查兩角和的正弦公式,考查三角形的內角和定理,屬于中檔題.16、π.【解析】
設三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【詳解】如圖所示,設三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構成的圖形的面積為π×O【點睛】本題考查三棱錐的外接球的相關問題,根據(jù)立體幾何中的線段關系求動點的軌跡,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用正弦定理將邊化角,結合誘導公式可化簡邊角關系式,求得,根據(jù)可求得結果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結果.【詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當且僅當時取等號)即三角形面積的最大值為:【點睛】本題考查解三角形的相關知識,涉及到正弦定理化簡邊角關系式、余弦定理解三角形、三角形面積公式應用、基本不等式求積的最大值、誘導公式的應用等知識,屬于常考題型.18、(1);(2).【解析】
(1)令可求得的值,令時,由可得出,兩式相減可得的表達式,然后對是否滿足在時的表達式進行檢驗,由此可得出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,對分奇數(shù)和偶數(shù)兩種情況討論,利用奇偶分組求和法結合等差數(shù)列和等比數(shù)列的求和公式可求得結果.【詳解】(1),當時,;當時,由得,兩式相減得,.滿足.因此,數(shù)列的通項公式為;(2).①當為奇數(shù)時,;②當為偶數(shù)時,.綜上所述,.【點睛】本題考查數(shù)列通項的求解,同時也考查了奇偶分組求和法,考查計算能力,屬于中等題.19、(1),,表示以為圓心為半徑的圓;為拋物線;(2)【解析】
(1)消去參數(shù)的直角坐標方程,利用,即得的直角坐標方程;(2)由直線與拋物線相切,求導可得切線斜率,再由直線與圓相切,故切線與圓心與切點連線垂直,可求解得到切點坐標,即得解.【詳解】(1)消去參數(shù)的直角坐標方程為:.的極坐標方程.∵,.當時表示以為圓心為半徑的圓;為拋物線.(2)設切點為,由于,則切線斜率為,由于直線與圓相切,故切線與圓心與切點連線垂直,故有,直線的直角坐標方程為,所以的極坐標方程為.【點睛】本題考查了極坐標,參數(shù)方程綜合,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.20、(I)證明見解析;(II)1【解析】
(I)過D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據(jù)角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據(jù)余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點睛】本題考查了線線垂直,線面夾角,意在考查學生的計算能力和空間想象能力.21、(1)見解析;(2)【解析】
(1)根據(jù)面面垂直性質及線面垂直性質,可證明;由所給線段關系,結合勾股定理逆定理,可證明,進而由線面垂直的判定定理證明平面.(2)建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,由空間向量法求得兩個平面夾角的余弦值,結合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標系,則,,,,,,.設平面的法向量是,則,令,,由(1)可知平面的法向量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際工程合同與索賠 心得
- 合伙分股合同模板
- 眼內炎治療新進展
- 2024合同協(xié)議書法司法解釋中英文對照
- 2024薪酬制物業(yè)管理合同
- 2024工程裝修施工合同范文
- 歐陸風云3(EU3)常用秘籍與國家代碼
- 2024勞動合同的注意事項
- 沈陽城市學院《影視導演》2023-2024學年第一學期期末試卷
- 沈陽城市學院《訴訟可視化》2023-2024學年第一學期期末試卷
- 消防安全培訓內容
- 2024-2030年鋁型材行業(yè)市場深度調研及前景趨勢與投資戰(zhàn)略研究報告
- 2024-2030年辣椒種植行業(yè)市場深度分析及發(fā)展策略研究報告
- 變電站綠化維護施工方案
- 校園展美 課件 2024-2025學年人美版(2024)初中美術七年級上冊
- 2024版《糖尿病健康宣教》課件
- ktv保安管理制度及崗位職責(共5篇)
- 腦出血試題完整版本
- (正式版)QBT 2174-2024 不銹鋼廚具
- 監(jiān)控維修施工方案
- 混凝土早強劑檢驗報告(出廠)
評論
0/150
提交評論