版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
6.3函數(shù)的最值高中數(shù)學北師大版選擇性必修二第二章1.會求給定區(qū)間上不超過三次的多項式函數(shù)的最大值、最小值.2.由單調(diào)性與最大(小)值的關(guān)系,提高學生數(shù)學運算的能力.(一)教材知識點1.最值點(1)最大值點:函數(shù)y=f(x)在區(qū)間[a,b]上的最大值點x0指的是:函數(shù)在這個區(qū)間上所有點的函數(shù)值都
f(x0).(2)最小值點:函數(shù)y=f(x)在區(qū)間[a,b]上的最小值點x0指的是:函數(shù)在這個區(qū)間上所有點的函數(shù)值都
f(x0).2.最值函數(shù)的
與
統(tǒng)稱為最值.不超過不小于最大值最小值(二)基本知能小試1.判斷正誤(1)函數(shù)的最大值不一定是極大值,函數(shù)的最小值也不一定是極小值.
()(2)函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值一定在兩個端點處取得.
(
)(3)開區(qū)間上的單調(diào)連續(xù)函數(shù)無最值.
(
)×√√階段小結(jié)1:求函數(shù)f(x)在[a,b]上的最大值和最小值的步驟(1)求函數(shù)在(a,b)內(nèi)的極值.(2)求函數(shù)在區(qū)間端點的函數(shù)值f(a),f(b).(3)將函數(shù)f(x)的極值與f(a),f(b)比較,其中最大的一個為最大值,最小的一個為最小值.
x(-∞,-1)-1(-1,1)1(1,+∞)f′(x)-0+0-f(x)極小值極大值階段小結(jié)2:求函數(shù)在無窮區(qū)間(或開區(qū)間)上的最值,一般要根據(jù)其極值及單調(diào)性畫出函數(shù)的大致圖象,借圖求解.注:求最值時,不可想當然認為極值點就是最值點,要通過比較再下結(jié)論.
2、已知函數(shù)f(x)=excosx-x.(1)求曲線y=f(x)在點(0,f(0))處的切線方程;[解]
(1)因為f(x)=excosx-x,所以f′(x)=ex(cosx-sinx)-1,f′(0)=0.又因為f(0)=1,所以曲線y=f(x)在點(0,f(0))處的切線方程為y=1.(2)設(shè)h(x)=ex(cosx-sinx)-1,則h′(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《日語學術(shù)論文寫作》教學大綱
- 2024版家庭裝修水電安裝協(xié)議書
- 2024網(wǎng)絡(luò)游戲開發(fā)運營方與廣告代理商的廣告投放合同
- 中考名著導讀《紅巖》
- 2024門窗行業(yè)信息化建設(shè)與數(shù)據(jù)服務(wù)合同3篇
- 2024雛雞養(yǎng)殖設(shè)備采購合同
- 05 全真模擬(一)-備戰(zhàn)2023年中考英語聽說高分攻略(北京專用)(答案及聽力原文)
- 2024航空器材采購與維修合同
- 2024銅門行業(yè)論壇贊助與合作合同3篇
- 臨床技能訓練 循環(huán)系統(tǒng)-衛(wèi)生部評估課件
- GB/T 18029.22-2024輪椅車第22部分:調(diào)節(jié)程序
- 垃圾焚燒行業(yè)經(jīng)營分析報告
- 合同審查報告模板
- JBT 14589-2024 敷膠雙螺桿泵(正式版)
- 新制定《公平競爭審查條例》主題
- 基于新課標學習的教材解讀及教學建議部編《道德與法治》二年級下冊
- 管道開挖修復施工方案
- 新點軟件使用培訓課件
- ka賣場行業(yè)分析
- 產(chǎn)科護理疑難病例討
- 胃結(jié)石術(shù)后護理
評論
0/150
提交評論