2023-2024學年浙江省寧波市象山縣中考聯(lián)考數學試卷含解析_第1頁
2023-2024學年浙江省寧波市象山縣中考聯(lián)考數學試卷含解析_第2頁
2023-2024學年浙江省寧波市象山縣中考聯(lián)考數學試卷含解析_第3頁
2023-2024學年浙江省寧波市象山縣中考聯(lián)考數學試卷含解析_第4頁
2023-2024學年浙江省寧波市象山縣中考聯(lián)考數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年浙江省寧波市象山縣中考聯(lián)考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結論:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正確結論的個數是()A.4 B.3 C.2 D.12.某自行車廠準備生產共享單車4000輛,在生產完1600輛后,采用了新技術,使得工作效率比原來提高了20%,結果共用了18天完成任務,若設原來每天生產自行車x輛,則根據題意可列方程為()A.+=18 B.=18C.+=18 D.=183.把多項式x2+ax+b分解因式,得(x+1)(x-3),則a、b的值分別是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-34.《語文課程標準》規(guī)定:7﹣9年級學生,要求學會制訂自己的閱讀計劃,廣泛閱讀各種類型的讀物,課外閱讀總量不少于260萬字,每學年閱讀兩三部名著.那么260萬用科學記數法可表示為()A.26×105 B.2.6×102 C.2.6×106 D.260×1045.下列運算正確的是()A.(a2)3=a5 B. C.(3ab)2=6a2b2 D.a6÷a3=a26.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:17.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°8.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數為()A.30° B.35° C.40° D.45°9.如圖,AB∥CD,F(xiàn)H平分∠BFG,∠EFB=58°,則下列說法錯誤的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH10.截至2010年“費爾茲獎”得主中最年輕的8位數學家獲獎時的年齡分別為29,28,29,31,31,31,29,31,則由年齡組成的這組數據的中位數是()A.28 B.29 C.30 D.31二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,邊長為4的正方形ABCD內接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認為正確結論的序號都填上)12.如圖所示,△ABC的頂點是正方形網格的格點,則sinA的值為____.13.尺規(guī)作圖:過直線外一點作已知直線的平行線.已知:如圖,直線l與直線l外一點P.求作:過點P與直線l平行的直線.作法如下:(1)在直線l上任取兩點A、B,連接AP、BP;(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;(3)過點P、M作直線;(4)直線PM即為所求.請回答:PM平行于l的依據是_____.14.如圖,PA,PB分別為的切線,切點分別為A、B,,則______.15.如果拋物線y=(k﹣2)x2+k的開口向上,那么k的取值范圍是_____.16.如圖,矩形ABCD的對角線BD經過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數y=的圖象上,若點A的坐標為(﹣2,﹣2),則k的值為_____.三、解答題(共8題,共72分)17.(8分)已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.(1)用含x的代數式表示線段CF的長;(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設=y(tǒng),求y關于x的函數關系式,并寫出它的定義域;(3)當∠ABE的正切值是時,求AB的長.18.(8分)有一個n位自然數能被x0整除,依次輪換個位數字得到的新數能被x0+1整除,再依次輪換個位數字得到的新數能被x0+2整除,按此規(guī)律輪換后,能被x0+3整除,…,能被x0+n﹣1整除,則稱這個n位數是x0的一個“輪換數”.例如:60能被5整除,06能被6整除,則稱兩位數60是5的一個“輪換數”;再如:324能被2整除,243能被3整除,432能被4整除,則稱三位數324是2個一個“輪換數”.(1)若一個兩位自然數的個位數字是十位數字的2倍,求證這個兩位自然數一定是“輪換數”.(2)若三位自然數是3的一個“輪換數”,其中a=2,求這個三位自然數.19.(8分)某同學報名參加學校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P為;(2)該同學從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;(3)該同學從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.20.(8分)如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.(1)求證:△AGE≌△BGF;(2)試判斷四邊形AFBE的形狀,并說明理由.21.(8分)解不等式:3x﹣1>2(x﹣1),并把它的解集在數軸上表示出來.22.(10分)解不等式組:并求它的整數解的和.23.(12分)如圖,某反比例函數圖象的一支經過點A(2,3)和點B(點B在點A的右側),作BC⊥y軸,垂足為點C,連結AB,AC.求該反比例函數的解析式;若△ABC的面積為6,求直線AB的表達式.24.計算:|﹣1|+﹣(1﹣)0﹣()﹣1.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:由拋物線開口方向得a<0,由拋物線的對稱軸位置可得b>0,由拋物線與y軸的交點位置可得c>0,則可對①進行判斷;根據拋物線與x軸的交點個數得到b2﹣4ac>0,加上a<0,則可對②進行判斷;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,兩邊除以c則可對③進行判斷;設A(x1,0),B(x2,0),則OA=﹣x1,OB=x2,根據拋物線與x軸的交點問題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數的關系得到x1?x2=,于是OA?OB=﹣,則可對④進行判斷.解:∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側,∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,而a<0,∴<0,所以②錯誤;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正確;設A(x1,0),B(x2,0),∵二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=﹣,所以④正確.故選B.考點:二次函數圖象與系數的關系.2、B【解析】

根據前后的時間和是18天,可以列出方程.【詳解】若設原來每天生產自行車x輛,根據前后的時間和是18天,可以列出方程.故選B【點睛】本題考核知識點:分式方程的應用.解題關鍵點:根據時間關系,列出分式方程.3、B【解析】分析:根據整式的乘法,先還原多項式,然后對應求出a、b即可.詳解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故選B.點睛:此題主要考查了整式的乘法和因式分解的關系,利用它們之間的互逆運算的關系是解題關鍵.4、C【解析】

科學記數法的表示形式為的形式,其中,n為整數確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同當原數絕對值時,n是正數;當原數的絕對值時,n是負數.【詳解】260萬=2600000=.故選C.【點睛】此題考查科學記數法的表示方法科學記數法的表示形式為的形式,其中,n為整數,表示時關鍵要正確確定a的值以及n的值.5、B【解析】分析:本題考察冪的乘方,同底數冪的乘法,積的乘方和同底數冪的除法.解析:,故A選項錯誤;a3·a=a4故B選項正確;(3ab)2=9a2b2故C選項錯誤;a6÷a3=a3故D選項錯誤.故選B.6、B【解析】

根據中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質求解.【詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【點睛】本題考查三角形中位線定理及相似三角形的判定與性質.7、C【解析】

由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,由三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴,由折疊的性質得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.8、B【解析】分析:根據平行線的性質和三角形的外角性質解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點睛:此題考查平行線的性質,關鍵是根據平行線的性質和三角形的外角性質解答.9、D【解析】

根據平行線的性質以及角平分線的定義,即可得到正確的結論.【詳解】解:,故A選項正確;又故B選項正確;平分,,故C選項正確;,故選項錯誤;故選.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,同位角相等;兩直線平行,內錯角相等.10、C【解析】

根據中位數的定義即可解答.【詳解】解:把這些數從小到大排列為:28,29,29,29,31,31,31,31,最中間的兩個數的平均數是:=30,則這組數據的中位數是30;故本題答案為:C.【點睛】此題考查了中位數,中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(最中間兩個數的平均數),叫做這組數據的中位數.二、填空題(本大題共6個小題,每小題3分,共18分)11、①②④【解析】

①根據ASA可證△BOE≌△COF,根據全等三角形的性質得到BE=CF,根據等弦對等弧得到,可以判斷①;

②根據SAS可證△BOG≌△COH,根據全等三角形的性質得到∠GOH=90°,OG=OH,根據等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;

③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;

④根據△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設BG=x,則BH=4-x,根據勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,

∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,

∴∠BOE=∠COF,

在△BOE與△COF中,,

∴△BOE≌△COF,

∴BE=CF,

∴,①正確;

②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,

∴△BOG≌△COH;

∴OG=OH,∵∠GOH=90°,

∴△OGH是等腰直角三角形,②正確.③如圖所示,

∵△HOM≌△GON,

∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;

④∵△BOG≌△COH,

∴BG=CH,

∴BG+BH=BC=4,

設BG=x,則BH=4-x,

則GH==,

∴其最小值為4+2,④正確.

故答案為:①②④【點睛】考查了圓的綜合題,關鍵是熟練掌握全等三角形的判定和性質,等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.12、.【解析】

解:連接CE,∵根據圖形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,∴CE⊥AB,∴sinA=,故答案為.考點:勾股定理;三角形的面積;銳角三角函數的定義.13、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【解析】

利用畫法得到PM=AB,BM=PA,則利用平行四邊形的判定方法判斷四邊形ABMP為平行四邊形,然后根據2平行四邊形的性質得到PM∥AB.【詳解】解:由作法得PM=AB,BM=PA,∴四邊形ABMP為平行四邊形,∴PM∥AB.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【點睛】本題考查基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了平行四邊形的判定與性質.14、50°【解析】

由PA與PB都為圓O的切線,利用切線長定理得到,再利用等邊對等角得到一對角相等,由頂角的度數求出底角的度數,再利用弦切角等于夾弧所對的圓周角,可得出,由的度數即可求出的度數.【詳解】解:,PB分別為的切線,

,,

又,

,

則.

故答案為:【點睛】此題考查了切線長定理,切線的性質,以及等腰三角形的性質,熟練掌握定理及性質是解本題的關鍵.15、k>2【解析】

根據二次函數的性質可知,當拋物線開口向上時,二次項系數k﹣2>1.【詳解】因為拋物線y=(k﹣2)x2+k的開口向上,所以k﹣2>1,即k>2,故答案為k>2.【點睛】本題考查二次函數,解題的關鍵是熟練運用二次函數的圖象與性質,本題屬于中等題型.16、1【解析】試題分析:設點C的坐標為(x,y),則B(-2,y)D(x,-2),設BD的函數解析式為y=mx,則y=-2m,x=-,∴k=xy=(-2m)·(-)=1.考點:求反比例函數解析式.三、解答題(共8題,共72分)17、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.【解析】

試題分析:(1)根據等腰直角三角形的性質,求得∠DAC=∠ACD=45°,進而根據兩角對應相等的兩三角形相似,可得△CEF∽△CAE,然后根據相似三角形的性質和勾股定理可求解;(2)根據相似三角形的判定與性質,由三角形的周長比可求解;(3)由(2)中的相似三角形的對應邊成比例,可求出AB的關系,然后可由∠ABE的正切值求解.試題解析:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根據勾股定理得,CE=,∵CA=,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE=,∴x=,∴AB=x+2=.18、(1)見解析;(2)201,207,1【解析】試題分析:(1)先設出兩位自然數的十位數字,表示出這個兩位自然數,和輪換兩位自然數即可;

(2)先表示出三位自然數和輪換三位自然數,再根據能被5整除,得出b的可能值,進而用4整除,得出c的可能值,最后用能被3整除即可.試題解析:(1)設兩位自然數的十位數字為x,則個位數字為2x,∴這個兩位自然數是10x+2x=12x,∴這個兩位自然數是12x能被6整除,∵依次輪換個位數字得到的兩位自然數為10×2x+x=21x∴輪換個位數字得到的兩位自然數為21x能被7整除,∴一個兩位自然數的個位數字是十位數字的2倍,這個兩位自然數一定是“輪換數”.(2)∵三位自然數是3的一個“輪換數”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次輪換得到的三位自然數是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次輪換得到的三位自然數是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的個位數字不是0,便是5,∴b=0或b=5,當b=0時,∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴這個三位自然數可能是為201,203,205,207,209,而203,205,209不能被3整除,∴這個三位自然數為201,207,當b=5時,∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c只能是1,5,7,9;∴這個三位自然數可能是為251,1,257,259,而251,257,259不能被3整除,∴這個三位自然數為1,即這個三位自然數為201,207,1.【點睛】此題是數的整除性,主要考查了3的倍數,4的倍數,5的倍數的特點,解本題的關鍵是用5的倍數求出b的值.19、(1);(1);(3);【解析】

(1)直接根據概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結果數,再找出一個徑賽項目和一個田賽項目的結果數,然后根據概率公式計算一個徑賽項目和一個田賽項目的概率P1;(3)找出兩個項目都是徑賽項目的結果數,然后根據概率公式計算兩個項目都是徑賽項目的概率P1.【詳解】解:(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P=;(1)畫樹狀圖為:共有10種等可能的結果數,其中一個徑賽項目和一個田賽項目的結果數為11,所以一個徑賽項目和一個田賽項目的概率P1==;(3)兩個項目都是徑賽項目的結果數為6,所以兩個項目都是徑賽項目的概率P1==.故答案為.考點:列表法與樹狀圖法.20、(1)證明見解析(2)四邊形AFBE是菱形【解析】試題分析:(1)由平行四邊形的性質得出AD∥BC,得出∠AEG=∠BFG,由AAS證明△AGE≌△BGF即可;(2)由全等三角形的性質得出AE=BF,由AD∥BC,證出四邊形AFBE是平行四邊形,再根據EF⊥AB,即可得出結論.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四邊形AFBE是菱形,理由如下:∵△AGE≌△BG

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論