版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AWSWhitepaper
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
Copyright?2024AmazonWebServices,Inc.and/oritsa?liates.Allrightsreserved.
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels:AWSWhitepaper
Copyright?2024AmazonWebServices,Inc.and/oritsa?liates.Allrightsreserved.
Amazon'strademarksandtradedressmaynotbeusedinconnectionwithanyproductorservicethatisnotAmazon's,inanymannerthatislikelytocauseconfusionamongcustomers,orinanymannerthatdisparagesordiscreditsAmazon.AllothertrademarksnotownedbyAmazonarethepropertyoftheirrespectiveowners,whomayormaynotbea?liatedwith,connectedto,orsponsoredbyAmazon.
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
PAGE\*roman
iii
TableofContents
Abstractandintroduction
i
Abstract
1
AreyouWell-Architected?
1
Introduction
2
Frictionlessideationtoproduction
2
Workforceanalyticsusecases
3
Anintelligentplatformapproach
4
MLarchitectureonAWS
5
Featureengineering
6
Thefeaturestore
6
Thealgorithms
8
Dataengineeringanddataquality
8
Hyper-parametertuning(HPT)
8
Modelregistry
10
Optimization
11
Optimizationdrivers
11
Fine-tuningandreuseofmodels
11
Scalingwithdistributedtraining
13
Avoidingcommonmisstepstoreducerework
13
Machinelearningpipelines
15
GoingfromPOCtolarge-scaledeployments
15
Applyingsoftwareengineeringprinciplestodatascience
16
Machinelearningautomationthroughpipelines
17
Trackinglineage
18
Monitoringforperformanceandbias
19
Post-trainingbiasmetrics
20
Monitoringperformance
20
Dataqualitymonitoring
20
Dealingwithdrifts
21
AugmentedAI
22
Human-in-the-loopwork?ows
22
Updatingmodelversions
24
Conclusion
25
Contributors
26
Furtherreading
27
AboutAccenture
28
Documentrevisions
29
Notices
30
AWSGlossary
31
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
Abstract
1
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
Publicationdate:July27,2022(
Documentrevisions
)
Abstract
Today,thereisareal-time,global,tectonicshiftintheworkplacecausedbydigitaltransformation.AcceleratedbytheCovidpandemic,thisdigitaltransformationhascreatednever-seen-beforeopportunitiesandsigni?cantworkplacedisruption.Fullyrealizingthenewmarketopportunitiesdemandsamodernizedworkforce.Askillsgapcontributedtobyseveralfactorsexistintoday'slabormarket.Someofthesefactorsaretheincreaseinthenumberofpeopleenteringtheworkforceeachyear,lackofrelevanteducation,andtheriseintechnologywhichneedsworkerstobeequippedwithnewskillstohelpthemkeepupwithadvancements.AddressingthiswideninggapbetweenthecurrentworkforceskillsandthoseneededfortomorrowisfrontandcenterinthemindsofeveryC-suite.
Thiswhitepaperoutlinesaninnovative,scalableandautomatedsolutionusing
deeplearning
(DL)and
machinelearning
(ML)onAmazonWebServices(AWS),tohelpsolvetheproblemofbridgingtheexistingtalentandskillsgapforbothworkersandorganizations.Combiningadvanceddatascience,MLengineering,deeplearning,
ethicalarti?cialintelligence
(AI),and
MLOps
onAWS,
thiswhitepaperprovidesaroadmaptoenterprisesandteamstohelpbuildproduction-readyMLsolutions,andderivebusinessvalueoutofthesame.
AreyouWell-Architected?
The
AWSWell-ArchitectedFramework
helpsyouunderstandtheprosandconsofthedecisionsyoumakewhenbuildingsystemsinthecloud.ThesixpillarsoftheFrameworkallowyoutolearnarchitecturalbestpracticesfordesigningandoperatingreliable,secure,e?cient,cost-e?ective,andsustainablesystems.Usingthe
AWSWell-ArchitectedTool
,availableatnochargeinthe
AWS
ManagementConsole
,youcanreviewyourworkloadsagainstthesebestpracticesbyansweringasetofquestionsforeachpillar.
Inthe
MachineLearningLens
,wefocusonhowtodesign,deploy,andarchitectyourmachinelearningworkloadsintheAWSCloud.ThislensaddstothebestpracticesdescribedintheWell-ArchitectedFramework.
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
Introduction
2
Formoreexpertguidanceandbestpracticesforyourcloudarchitecture—referencearchitecturedeployments,diagrams,andwhitepapers—refertothe
AWSArchitectureCenter
.
Introduction
Today’srapidlychangingenvironmentdemandstheabilityfororganizationstoadapttochangetocreateasustainableandproductiveworkforce.Thrivinginthisenvironmentrequiresrapidadaptationandreadinessforupskillingtheworkforcefortomorrow.
AccordingtoVentureBeat,about87%ofMLmodelsnevermakeittoproduction.Eventhough9outof10businessexecutivesbelievethatAIwillbeatthecenterofthenexttechnologicalrevolution,completion,andsuccessfulproductiondeploymentis
seenasabigchallenge
asit
requiresspeci?cengineeringexpertiseandcollaborationbetweenseveralteams(MLengineering,IT,DataScience,DevOps,andsoon).
Accenture
hasbuiltascalable,industrialized,AI-poweredsolutionthatisakeycomponentinhelpingsolvethetalentandskillingproblemoftodayandtomorrowtocreateaproductiveworkforce.Itdescribesaninnovative,cloud-nativeAWSapproachthatcanbetakentoindustrializetheMLsolution,andhelporganizationsbridgetheskillsgap.
Thiswhitepaperdescribesatechnicalsolution(alsoreferredtoasindustrysolution)forbuildingandscalingML,andspeci?cally,DLmodelsfortheseusecases,andhowAccentureisindustrializingtheend-to-endprocesstoachievethetechnicalgoalspreviouslydetailed.Thetechnicalthoughtprocessexplainedherecanbeexpandedandappliedtomostproblemsinotherindustries.YoucanalsouseittocreateastableandsustainableEnterpriseAIsystem.
Frictionlessideationtoproduction
ThegoalofEnterpriseAIandMLOpsistoreducefrictionandgetallmodelsfromideationtoproductionintheshortestpossibletime,withaslittleriskaspossible.IntegratingAItechnologiesintobusinessoperationscanprovetobeagame-changerfororganizations,withthebene?ts
ofreducingcosts,boostinge?ciency,generatingactionable,preciseinsights,andcreatingnewrevenuestreams.Thisrequiresnotonlycreatinge?cientmodels,butalsocreatingacompleteend-to-endstable,resilient,andrepeatableEnterpriseAIsystemthatcanprovidesustainablevalueandbeamenabletocontinuousimprovementstoadapttochangingenvironments.
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
PAGE
3
Workforceanalyticsusecases
Workforceanalytics
isanadvancedsetofdataanalysistoolsandmetricsforcomprehensiveworkforceperformancemeasurementandimprovement.WorkforceanalyticsarehighlysensitivebynatureandrequiretrustedMLandDLalgorithmstocreatescalable,productionizedsolutionsforharnessinghumanpotential.
TobringaboutabalancebetweenresponsibleAIandcomputingatscale,Accenturecreatedanadvanced,reusable,AWSMLOpsarchitectureformultipleworkforceproductivityusecases,including:
Solutions.AI
forTalentandSkilling—An
AI-poweredsolution
thatdeliversintelligentinsightstohelpclosetheskillsgapinanyorganization.ThroughSolutions.AI,Accenturecreatedenterprise-wideAIsolutionsthatdelivergame-changingresults,fast.
FutureofU:Skills.Jobs.Growth
—AnAI-enabledplatformsolutioncreatedincollaborationwithAccenturepartners,whoarecommittedtoacceleratingasmoothtransitiontohelpgetdiversetalentskilledandintegratedintotheAIworkforce.
IntelligentWorkforceInsights
–Usesthepowerofcutting-edgeAI/MLtechnologiestodeveloprolemapsthatidentifydeclining,stable,andemergingskills,bothinternallyandinthemarket,andassessrolesforupskilling.
ThechallengewiththeseusecasesisthatthebackendneedsmassiveamountofcomputingresourcestoinferandproducetheMLscoreresults.Foroptimaluserexperience,thescoringneedstohappenfastenough,withnearreal-timeintermediatescores.Allthreeoftheseusecaseshavethreecommontechnicaltraits:
MLengineeringatscale
AI/MLautomationwithresponsibleAI
End-to-endproductionizedlarge-scaleresilientAI/MLsystems
Anintelligentplatformapproach
Deeplearningissettoachievetransformationacrossindustriesandcreatenewopportunitiesonascalenotseensincetheindustrialrevolutioninthe19thcentury.Itcomeswithgreatpromise,
butwithitaresigni?cantchallenges.MostDLmodelsarebuiltonricher
algorithmicprimitives
,andthereforerequirehigherreusebetweentasks,ratherthantrainingamodelfromscratcheachtimethereisanewproblemathand,oranewdataset.
Forbusinessestoderivevalue,MLandDLmodelsneedtobeproductionized,runatscale,andreusedacrossorganizations.Lackofscalability,repeatability,andmanualprocessesdiminishanyvaluethatwouldbeotherwiserealizedfromthesepowerfulmodels.
CompletesolutionforscalingandproductionizingDLmodelswithautomatedpipelines
Thisproposedarchitectureinthepreviousdiagramisdesignedtohelpachievethreegoals:
Greater,systematicreuseoffeaturesandarchitectures
Reducesmanualprocesses
Increasesspeedtomarket
MLarchitectureonAWS
Expandingonthepreviousarchitecture,thefollowingarchitectureisadrill-downofhowacompletesolutioncanbebuiltwithvariousAWScomponentsandconnectedforaseamless,resilient,production-gradesolutionthatisdrivenbyperformanceandeasytomaintain.
Completesolutionwithcloud-nativeAWScomponents
(Copyright2022?Accenture.Allrightsreserved)
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
Thefeaturestore
PAGE
6
Featureengineering
ManyDLandMLmodelsareusedfortheworkforceproductivitysolution;however,textclassi?cationandsentencepredictionareinherentlythemainclassi?ersyouneed.Giventhesuperiorperformanceofneurallanguagemodels,andbecauseitenablesmachinestounderstandqualitativeinformation,it?tstheneedofbuildingneuralnetwork-basedDLmodelsforassessingpeoples’skillspro?ciency,andforrecommendingnewcareerpathways.
BidirectionalEncoderRepresentationsfromTransformers
(BERT)isthe?rstNaturalLanguageProcessing(NLP)techniquetorelysolelyonaself-attentionmechanism,whichismadepossiblebythebidirectionaltransformersatthecenterofBERT'sdesign.Thisissigni?cantbecauseawordmaychangemeaningasasentencedevelops.Eachwordaddedaugmentstheoverallmeaningofthesentence,andthecontextmaycompletelyalterthemeaningofaspeci?cword.
Thefeaturestore
OneofthekeyneedsfortheindustryusecaseslistedinthiswhitepaperistoprovideC-suiteandorganizationswitharoadmaptoaccelerate,scale,andsustaindigitaladoption.ToenableindividualtalentmobilityusingAI,itisnecessarytocollectdatapointsattheindividuallevel.
MakingAImodelsunderstandpeople’sstrengths,interests,andotherpersonalcriteriaresultinprovidingbettercareerrecommendationsthatbene?ttheworkforceandorganizationsalike.Oneofthe?rststepsinthejourneyofcreatingaproductionized,stableAI/MLplatformistofocusonacentralizedfeaturestore.
After
AmazonSageMakerProcessing
appliesthetransformationsde?nedinthe
SageMakerData
Wrangler
,thenormalizedfeaturesarestoredinano?inefeaturestoresothefeaturescanbesharedandreusedconsistentlyacrosstheorganizationamongcollaboratingdatascientists.ThismeansSageMakerProcessingandDataWranglercanbeusedtogeneratefeatures,andthenstoretheminafeaturestore.Thisstandardizationisoftenkeytocreatinganormalized,reusablesetoffeaturesthatcanbecreated,shared,andmanagedasinputintotrainingMLmodels.Youcanusethisfeatureconsistencyacrossthe
maturityspectrum
,whetheryouareastartuporanadvancedorganizationwithanMLcenterofexcellence.
The
AmazonSageMakerFeatureStore
isaccessibleacrosstheorganizationfordi?erentteamstocollaborate,promotingreuse,reducingoverallcost,andavoidingsiloswithduplicateworke?orts.ThefollowingqueryisasampleofthecentralFeatureStorecreatedwithBERTembeddings.A
SageMakerFeatureGroup
andaFeatureStorearecreated.Multipledownstreamteamscanretrieve
andusefeaturesfromthiscentralstoreinsteadofredoingfeatureengineeringrepeatedly,addingtotheorganization’soperationalcostsandnon-standardizationissues.
FeatureStorewithBERTembeddingsreadyforreuseacrosstheorganization
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
Dataengineeringanddataquality
PAGE
8
Thealgorithms
TherearethreekeypillarstobuildingsuccessfulMLapplications.Ifnotdonecorrectly,inspiteofallthestate-of-the-artcontinuousintegration/continuousdelivery(CI/CD),featurestore,featureengineering,andgraphicsprocessingunit(GPU)-acceleratedDLorautomatedpipelines,theend-to-endEnterpriseAIplatformisboundtofail:
Thequalityofthedata
Theminimumlevelofcomplexityemployedtosolvetheproblem
Theabilityofthesolutiontobemeasuredandmonitored
Dataengineeringanddataquality
Thetalentandskillingindustryusecaserequiresover20datasourcestobeingestedfrom.Oneofthemainchallengesisto?xdataqualitybeforefeedingtherawdatasetsintoyourDLmodelsforclassi?cationandrecommendation.Dataqualityissuescandeeplyimpactnotjustthedataengineeringpipelines,butalltheMLpipelinesdownstreamaswell.
Deequ
helpsinanalyzingthe
datasetsacrossallthestagesoffeatureengineering,traininganddeployment.The
training-serving
skew
isaptlyshownbyDeequ,bydetectingdeviationfrombaselinestatistics.Deequcancreateschemaconstraintsandstatisticsforeachinputfeature.Completeness,Correlation,Uniqueness
andComplianceDeequmetricscanbetrackedintheMetricsRepository,andSparkprocessing
alertscanbesetondetectinganomaliesforimmediateactions.
Hyper-parametertuning(HPT)
Ashyper-parameterscontrolhowtheMLalgorithmlearnsthemodelparametersduringtraining,it’simportanttode?neoptimizationmetricsandcreate
SageMakerHyperParameterTuning
jobstoconvergeonthebestcombinationofhyper-parameters.BasedonMLbuildexperience,AWSrecommendsusing
Bayesianhyper-parameteroptimization
strategyovermanual,random,orgridsearch,asitusuallyyieldsbetterresultsusingfewercomputerresources.
Forthetalentandskillingindustryusecasesde?nedearlier,theDLmodelsneedtoclassifymillionsofjobsandskillstopredictagoodmatchanduserlearningsequence.ThefollowingdetailsaresomeofthethingsthatwefoundusefulandwerekeyinourthoughtleadershipforcreatingAIsolutions.Wede?netheobjectivemetricthattheHPTjobwilltrytooptimize,whichis
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
Hyper-parametertuning(HPT)
PAGE
9
validationaccuracyforthetalentandskillingusecases.Thefollowingisanexamplecodesnippetforthemetricsde?nition:
objective_metric_name="validation:accuracy"
metrics_definitions=[
{"Name":"train:loss","Regex":"loss:([0-9\\.]+)"},
{"Name":"train:accuracy","Regex":"accuracy:([0-9\\.]+)"},
{"Name":"validation:loss","Regex":"val_loss:([0-9\\.]+)"},
{"Name":"validation:accuracy","Regex":"val_accuracy:([0-9\\.]+)"},
]
Next,wesettheHyperparameterTunerwithestimatorandHyperparameterranges.
Acrucialsettingistheearly_stopping_type,whichyousetsothatSageMakercanstopthetuningjobwhenitstartsto
over?t
,andcanhelpsavecostoftheoveralltuningjob.Inaccuratehyperparametertuningcannotonlyresultinexcessivecosts,butalsoanine?ectivemodelevenafterhoursoftraining.
objective_metric_name="validation:accuracy"
tuner=HyperparameterTuner(estimator=estimator,objective_type="Maximize",objective_metric_name=objective_metric_name,hyperparameter_ranges=hyperparameter_ranges,metric_definitions=metrics_definitions,max_jobs=2,
max_parallel_jobs=10,strategy="Bayesian",early_stopping_type="Auto",
)
Combiningallofthistogether,youhavethefollowingbuildandtrainingprocesstakingBERTasanexample.OtherDLmodelsbuiltwithPyTorch,MXNet,orTensorFlowfollowthesame
process.Itisessentialtogetthefollowingthreestages(withintheboxunderMACHINELEARNINGENGINEERING)correcttomoveontoproductionizingthesystemwithlargescalemodeldeployments.
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
Modelregistry
PAGE
10
CompleteMLengineeringprocessand?ne-tuningdeeplearningmodels
Modelregistry
Itisimportanttocatalogmodelstoexplainthemodelpredictionsandinsights.Itisalsoimportantthatallmodelspromotedtoproductionarecataloged,allmodelversionsmanaged,metadatasuchastrainingmetricsareassociatedwithamodel,andtheapprovalstatusofamodelismanaged.
Thisisespeciallyneededwhenorganizationswanttomovefromad-hocone-o?proof-of-conceptstoembeddingAIintheirenterprisesystemswithmultipleteams,doingdailyDLexperiments.ThisisimplementedinthesolutionusingSageMakerModelRegistry.
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
Optimizationdrivers
PAGE
11
Optimization
DLissimpleinessence.Inthelastfewyears,AWShasachievedastonishingresultsonmachine-perceptionproblemswiththehelpofsimpleparametricmodelstrainedwithgradientdescent(GD).Extendingthat,allthatisneededatthecoreissu?cientlylargeparametricmodelstrainedwithGDonalargedataset.
CreatingaDLalgorithmoridentifyingthealgorithmtouseand?ne-tuneisthe?rststep.Thenextstepforanenterpriseistoderivebusinessvalueoutofthealgorithm.Thatcanbeachievedonlywhenthemodelsareappropriatelyindustrialized,scaled,andcontinuouslyimproved.Ill-performingmodelsnegativelyimpactabusinessororganization’sbottomline.InAccenture’stalentandskillingsolution,thereareover50modelsrunninginProduction,makingalarge-scale,smooth,operationalizationprocessanecessity.
Optimizationdrivers
DLhaspositioneditselfasanAIrevolutionandisheretostay.Someofthebene?tsofusingDLmodelsare:
Reusability
Scalability
OptimizingandscalingMLandDLmodelsinproductionisacrucialsetoftasks,andonethatmustbedonewith?nesse.Tomaximizethebene?tslistedpreviously,aproperimplementationapproachmustbetaken.
Followingaredetailsonhowitshouldbeimplementedfortheindustryusecases,takingtheexampleofafewofthemodels.ThesameapproachcanbeusedforscalingmanyotherDLmodelsfornewproblems.
Fine-tuningandreuseofmodels
Periodically,businessesgetupdatedtrainingdatafrommarketintelligencedatasourcesonnewmarkettrends.Thereisalwaysaneedtooptimizethehyper-parametersoftheTensorFlowBERTclassi?erlayer.Forsuchcases,wherethetuningjobmustberunagainwithanupdated
datasetoranewversionofthealgorithm,warmstartwithTRANSFER_LEARNINGasthestarttype
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
Fine-tuningandreuseofmodels
PAGE
12
helpsreusethepreviousHPTjobresults,butalongwithnewhyperparameters.Thisspeedsupconvergingonthebestmodelfaster.
ThisisparticularlyimportantinEnterpriseAIsystems,asmultipleteamsmaywanttoreusethemodelscreated.TrainingDLmodelsfromscratchrequiresalotofGPU,compute,andstorageresources.Modelreuseacrosstheorganizationhelpsinreducingcosts.Therefore,ausefultechniqueformodelreuseis?ne-tuning.Fine-tuningmethodologyinvolvesunfreezingafewofthetoplayersofafrozenmodelbaseforfeatureextraction,andthenjointlytrainingboththenewlyaddedpartofthemodel,whichisthefullyconnectedclassi?erandtoplayers.Withthis,amodelcanbereusedforadi?erentproblem,anddoesnothavetobere-trained,savingcostsforthecompany.
Inthefollowingsections,youwillseehowyoucanimplementandscalethemodel?ne-tuningstrategiespreviouslydiscussed,whilemaintainingalaserfocusonthebusinessmetricsweneedtoattain.
WarmStartConfigusesoneormoreoftheprevioushyper-parameterstuningjobrunscalledthe
parentjobs,andneedsaWarmStartType.
fromsagemaker.tensorflowimportTensorFlow
estimator=TensorFlow(entry_point="tf_bert_reviews.py",source_dir="src",
role=role,instance_count=train_instance_count,instance_type=train_instance_type,volume_size=train_volume_size,py_version="py37",framework_version="2.3.1",hyperparameters={
"epochs":epochs,"epsilon":epsilon,
"validation_batch_size":validation_batch_size,"test_batch_size":test_batch_size,"train_steps_per_epoch":train_steps_per_epoch,"validation_steps":validation_steps,"test_steps":test_steps,
"use_xla":use_xla,"use_amp":use_amp,
"max_seq_length":max_seq_length,"enable_sagemaker_debugger":enable_sagemaker_debugger,
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
Scalingwithdistributedtraining
PAGE
13
"enable_checkpointing":enable_checkpointing,
"enable_tensorboard":enable_tensorboard,"run_validation":run_validation,"run_test":run_test,
"run_sample_predictions":run_sample_predictions,
},
input_mode=input_mode,metric_definitions=metrics_definitions,
SettingupHyperparameterTunerwithWarmStartConfig,includingnewhyper-parameterranges.
objective_metric_name="train:accuracy"tuner=HyperparameterTuner(
estimator=estimator,objective_type="Maximize",objective_metric_name=objective_metric_name,hyperparameter_ranges=hyperparameter_ranges,metric_definitions=metrics_definitions,max_jobs=2,
max_parallel_jobs=1,strategy="Bayesian",early_stopping_type="Auto",warm_start_config=warm_start_config,
)
Scalingwithdistributedtraining
Fore?cientparallelcomputingduringdistributedtraining,employboth
dataparallelismand
modelparallelism
.SageMakersupportsdistributedPyTorch.Youcanusethe
HuggingFace
Transformers
librarythatnativelysupportstheSageMakerdistributedtrainingframeworkforbothTensorFlowandPyTorch.TheSageMakerbuilt-in,distributed,all-reducecommunicationstrategyshouldbeusedtoachievedataparallelismbyscalingPyTorchtrainingjobstomultipleinstancesinacluster.
Avoidingcommonmisstepstoreducerework
ThebiggestdrivingfactorinmakingasuccessfulproductionizedMLprojectthathasminimaltonoamountofreworkisacollaborativeinvolvementbetweentheMLteamandthebusinessunit.
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
Avoidingcommonmisstepstoreducerework
PAGE
14
Secondly,transformingdatascienceprototypescriptsfromexperimentationphasetomodularperformantcodeforproductionisadeeplyinvolvedtask,andifnotdoneright,willnotproduceastableproductionsystem.
Finally,theecosystemofMLengineeringandMLOpsisaculminationofmultipleprocessesandstandardsfromwithinDevOps,addinginML-speci?ctoolinganddomain-speci?celements,therebybuildingrepeatable,resilient,production-capabledatasciencesolutionsonthecloud.ThesethreetenetsalonedistinguishamaturedAI/MLenterprisefromonethathasjuststartedinthejourneyofusingMLforderivingbusinessvalue.
Forindustrysolutions,asmentionedintheWorkforceanalyticsusecasessectionofthisdocument,followingaresomeoptimizationsthathaveprovedusefultohavingane?cient,enterprise-grade,end-to-end,industrialized,MLsolution:
Removemonolithicprototypescripts
Identifydi?cult-to-testcodeinlarge,tightlycoupledcodebases
Introducee?ectiveencapsulationandabstractiontechniques
Inascaled,industrialized,productionversion,thefullend-to-endautomateddataengineeringandMLengineeringpipelineistheproductbuiltonthedatasciencescriptsintheexperimentationphase.
AccentureEnterpriseAI–ScalingMachineLearningandDeepLearningModels
AWSWhitepaper
GoingfromPOCtolarge-scaledeployments
PAGE
15
Machinelearningpipelines
DespitemanycompaniesgoingallinonML,hiringmassiveteamsofhighlycompensateddatascientists,anddevotinghugeamountsof?nancialandotherresources,theirprojectsendup
failing
athighrates
.
Movingfromasinglelaptopsetuptowardascalable,production-grade,datascienceplatformisacompletelydi?erentchallengefromtheproof-of-conceptstage,andarguably,oneofthemostdi?cult,asitinvolvescollaboratingwithdi?erentteamsacrossanorganization.Accenturehas
devisedascalableanduniqueapproachfortheAccenturetalentandskillingAIsolutionsdiscussedinthiswhitepaper,togofromprototypetofull-scaleproductionizedsystemsinaveryshortperiodoftime;enhancing“speedtomarket”andgeneratingvalue.
MLtechnicaldebtmayrapidlyaccumulate.WithoutstrictenforcementofMLengineeringprinciples(builtonrigoroussoftwareengineeringprinciples)todatasciencecodemayresultinamessypipeline,andmanagingthesepipelines–detectingerrorsandrecoveringfromfailures–
becomesextremelydi?cultandcostly.Comprehensivelivemonitoringofsystembehaviorinnearrealtime,combinedwithautomatedresponse,iscriticalfor
long-termsystemreliability
.
Thisandthefollowingsectionsaddresstheseproblems,andprovideasolution.
GoingfromPOCtolarge-scaledeployments
ThemainchallengesforcompanieslookingtomovebeyondtherealmofbasicAIproofofconcepts(POCs),manualdatasciencePOCs,andpilotprogramstoEnterpriseAI,canbegroupedaroundtheneedtoachievethefollowingatEnterpriselevel:
Repeatability
Scalability
Transparency/Explainability
AccentureEnterpr
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 水電安裝專項(xiàng)施工方案
- 2025年度二零二五年度木材出口代理服務(wù)合同標(biāo)準(zhǔn)4篇
- 于洪區(qū)展館施工方案
- sbc防水卷材施工方案
- 二零二五年度打井工程地質(zhì)鉆孔資料保密協(xié)議4篇
- 2025年度大學(xué)生實(shí)習(xí)就業(yè)實(shí)習(xí)補(bǔ)貼支付協(xié)議4篇
- 2025版木箱紙箱環(huán)保回收及再利用合作協(xié)議3篇
- 2025年度木屋建造與綠色建材采購(gòu)供應(yīng)合同3篇
- 2025年度苗圃基地與旅游開發(fā)企業(yè)合作合同4篇
- 2025年度出租屋租賃合同范本:租賃屋租賃合同租賃雙方糾紛調(diào)解機(jī)制2篇
- 寒潮雨雪應(yīng)急預(yù)案范文(2篇)
- 垃圾車駕駛員聘用合同
- 變壓器搬遷施工方案
- 單位轉(zhuǎn)賬個(gè)人合同模板
- 八年級(jí)語文下冊(cè) 成語故事 第十五課 諱疾忌醫(yī) 第六課時(shí) 口語交際教案 新教版(漢語)
- 2024年1月高考適應(yīng)性測(cè)試“九省聯(lián)考”數(shù)學(xué) 試題(學(xué)生版+解析版)
- EPC項(xiàng)目采購(gòu)階段質(zhì)量保證措施
- T-NAHIEM 101-2023 急診科建設(shè)與設(shè)備配置標(biāo)準(zhǔn)
- 四川2024年專業(yè)技術(shù)人員公需科目“數(shù)字經(jīng)濟(jì)與驅(qū)動(dòng)發(fā)展”參考答案(通用版)
- 煤炭裝卸服務(wù)合同
- 廣東省佛山市順德區(qū)2023學(xué)年中考一模物理試題(含答案解析)
評(píng)論
0/150
提交評(píng)論