版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ACPA’sIntroductiontoAI:FromAlgorithms
toDeepLearning,WhatYouNeedtoKnow
ii
DISCLAIMER
ThispaperwaspreparedbytheCharteredProfessionalAccountantsofCanada(CPACanada)andtheAmericanInstituteofCPAs(AICPA),asnon-authoritativeguidance.
CPACanadaandAICPAdonotacceptanyresponsibilityorliabilitythatmightoccurdirectlyorindirectlyasaconsequenceoftheuse,applicationorrelianceonthismaterial.
?2019CharteredProfessionalAccountantsofCanada
Allrightsreserved.Thispublicationisprotectedbycopyrightandwrittenpermissionisrequiredtoreproduce,storeinaretrievalsystemortransmitinanyformorbyanymeans(electronic,mechanical,photocopying,recording,orotherwise).
Forinformationregardingpermission,pleasecontact
permissions@cpacanada.ca
ACPA’SINTRODUCTIONTOAI:FROMALGORITHMSTODEEPLEARNING,WHATYOUNEEDTOKNOW
PAGE
10
ExecutiveSummary
Althoughnotalwaysnoticeabletothegeneralpublic,ArtificialIntelligence(AI)hasbeenaroundsincethe1950s.However,advancementsinAIhaveacceleratedinthepastdecadeduetotheriseincomputingpower,theavailabilityofdata,andimprovementsinmachinelearningalgorithms.Asaresult,AIcapabilitieshavebeguntoinfiltrateourdailylives—somemoresothanothers.WithAIadoptionincreasingforbothconsumersandbusinesses,itisimportantforCPAstounderstandthefundamentalsofAIandthepotentialimpacttotheirorganizations,clients,andthemselves.
CPAshaveanopportunitytouseAIasanenablerofinnovationandincreasedproductivity.LeveragingAI,CPAscanperformbetterqualityworkwithhigherefficiency.Buttodothat,CPAsneedasolidunderstandingofhowAIworksbeforetheycanidentifytheseopportuni-ties.Forexample,roboticprocessautomationcanincreaseproductivityandappeartoworklikeAI,butisit?WheredomachinelearninganddeeplearningfitintotheworldofAI?
ThispublicationwasdevelopedbyCharteredProfessionalAccountantsofCanada(CPACanada)andtheAmericanInstituteofCPAs(AICPA)tobeusedasafoundationalresource.Itwillexplainthebuzzwordsandtermsyouhavelikelybeenhearing,discusstheevolutionofdata,AIandcomputingpowerandhelpyoutobegintothinkaboutAIandhowitmightimpactyourwork.FuturepublicationsdedicatedtoAIwillrefertothisresourceasitisthefirstofaplannedseriesofpublicationstoexploreAIanditsimpactontheCPAprofession.
CPACanadaandtheAICPAencourageallCPAstocontinuereading,collaboratingwithcolleaguesandlearningaboutAIandothertechnologieswhichmayimpactyouasaCPA.Weareallonthisdigitaljourneytogether!
Introduction
Asyoureadthis,asmartphoneappcalledClimateBasicistellingfarmerswheretoplanttheircrops.Theappdividesthelandintoplots,scansthroughlocaltemperatureanderosionrecords,expectedrainfall,soilqualityandotheragriculturaldatatofigureouthowtomaxi-mizeyields.
Somewhere,someoneissittingontheircouchidlyscrollingthroughNetflix’srecommendations,blissfullyunawaretheyareuniquetothemandweregeneratedbyanalgorithmthatcomparestheirindividualTV-viewingpatternswiththoseofmillionsofusersacross190countries.
Intheaccountingprofessionweseeautomationinaccountspayablewheremanualtaskshavebeenreplacedbysystemsthatdoeverythingfrommatchingpurchaseorderstoflag-ginginvoicesforpayments.Moreover,throughOpticalCharacterRecognitionandmachinelearning,algorithmscanreadthoseinvoicesandclassifyexpensetypesoraccounttypesautomaticallywithahighdegreeofaccuracy.
WelcometoArtificialIntelligence(AI).FromvirtualassistantSiritonavigationappWazetoautonomouscarstohumanoidrobotbankambassadorsandhospitalreceptionists,
toGoogleAssistant’sabilitytocallahairsalonandsetupanappointmentforyou,AIischanginghowweliveandwork.AIiseverywhereandwearestilljustscratchingthesurfaceofhowitwillchangehowweworkandlive.
ButWhatIsAI,Really?
Ashortanswerandthebroadestdefinition:AIisthescienceofteachingprogramsandmachinestocompletetasksthatnormallyrequirehumanintelligence.
Thenewspacerace:GlobalinitiativestowinatAI
Ofthe$15.2billioninvestedgloballyinAIstart-upsin2017,48%wenttoChinaand38%wenttotheU.S.,asperCBInsights.1ThisisindicativeofaglobalracetoleadinAI.TheChinesegovernmentinitsStateCouncilpaperhaslaidoutitsstrategytoemergeasaglobalAIhubby2030.
Ontheotherhand,intheUnitedStates,theDefenseAdvancedResearchProjectsAgency(DARPA),announcedinSeptember2018a$2billioncampaigntodevelopthenextwaveofAItechnologiesfocusedoncon-textualreasoningcapabilities.2
TheEuropeanUnion(EU)inApril2018launcheda$1.8billioninvestmentinAIresearchundertheEU’sHorizon2020fund.3
Francehasannounceda$1.8billioninvestmentpolicythrough2022focusedonAIanddatasharing.4
TheUnitedKingdomgovernmentannounceda£300millioninvestmentallocationinApril2018and50leadingUKbusinesseshavecomefor-wardtoseta£1billiondealinAI.5
TheGovernmentofCanadaisallinaswell.In2017,ittaskedtheCanadianInstituteforAdvancedResearchtodevelopa$125millionAIstrategy.6TheCanadiangovernmentisalsoinvesting$950millionintheInnova-tionSuperClusterinitiativewhichincludesSCALE.AI(SupplyChainsandLogisticsExcellence.AI)anindustry-ledconsortiumthatwillshapeanewAI-poweredglobalsupplychainplatform.7
/the-download/610271/chinas-ai-startups-scored-more-funding-than-americas-last-year/
/news-events/2018-09-07
/sites/amyguttman/2018/09/28/three-innovative-european-startups-to-watch/#507861316f37
/article/us-france-tech/france-to-spend-1-8-billion-on-ai-to-compete-with-u-s-china-idUSKBN1H51XP
/business/uk-government-ai-research
www.newswire.ca/news-releases/canada-funds-125-million-pan-canadian-artificial-intelligence-strategy-616876434.html
www.ic.gc.ca/eic/site/093.nsf/eng/home
WhyIsItImportantforCPAstoStayCurrentwithWhatIsHappeninginAI?
Simplyput,AIhasthepotentialtosignificantlyimpactaccountingandassurancejobsandbusinessesinthenearfuture—ifithasnotalready.Transactionaltasksareincreasinglybeingautomated.Algorithmshavetheabilitytospotsubtlecluesindatasetstopinpointfraudoridentifynewopportunitiessuchassavings,improvedefficiencyandprofitability,andnewmarketopportunities.Allthiswhileleveragingandmakingsenseofalargevolumeofinformationcomingfrommultiplesources,commonlyreferredtoasBigData.
Ofcourse,everyonehasanopinionaboutAI.Somefocusonthepositiveandhowitwillimproveeverythingfromtransportationtomedicaldiagnostics.Othersseeproblemsandethicalconcerns:thepotentialeliminationofjobs,andtheviolationofprivacy.HowfarcanwetrusttheautonomyofAIsystems?Forexample,howdoesAIresolveaself-drivingcar’sdilemmawhenitmustdecidewhethertocrashintoanoncomingcarorpedestrianwhenanaccidentisunavoidable?Thereisalsothequestionofdecisiontransparency.WouldeveryAIsystembeabletoexplainintermsweunderstand,thereasonsforitsdecisions?
CPAshaveanopportunitytofocusonAIasanenablerofinnovationandincreasedproduc-tivity.ConsidertheClimateBasicapphelpingfarmers.AccordingtotheU.S.DepartmentofAgriculture,thisuseofAIacrosstheindustryhasproducedthelargestcropsinthecoun-try’shistory.AndNetflixsaysitssophisticatedrecommendationenginesavesthecompany
$1billioninlostsubscribers.8CPAshavetheopportunitytoimproveefficienciesandqual-ityofday-to-dayworkthroughAIthatreadscontracts,performsautomatedtaskssuchasaccuratelyidentifyingandbookingexpenses,oridentifyingriskytransactionsinrealtime.
Fastfacts:ThepotentialimpactofAIisalsofuelinginvestmentsandresearch.TheInternationalDataCorporation(IDC)forecastsAI-relatedinvestmentswillgrowfrom$12billionin2017to$57.6billionin2021.Since2013,machine-learning-basedAIhasbeenthethird-fastest-growingcategoryforpatentfiling.Onthejobfront,employmentsearchengineIndeedreportstheshareofjobsinCanadaandtheU.S.requiringAIskillshassignificantlygrownsince2013.
/netflix-recommendation-engine-worth-1-billion-per-year-2016-6
ThispublicationwasdevelopedbyCPACanadaandtheAICPAtobeusedasafoundationalresource.Itwillexplainthebuzzwordsandtermsyouhavelikelybeenhearing,discusstheevolutionofdata,AIandcomputingpowerandhelpyoutobegintolearnaboutAIandthinkhowitmightimpactyourwork.CPACanadawillalsorefertothispublicationinfuturepubli-cationsdedicatedtoAIasthefirstofaplannedseriesofpublicationstoexploretheimpactofAIintheCPAprofession.Thediagrambelowprovidesanoverviewoftheterminologytobecoveredthroughoutthispublicationandhelpsprovideavisualrepresentationofwherethesetechnologiesfitinrelationtoeachother.
ArtificialIntelligence
MachineLearning
DeepLearning
NoArtificialIntelligence
ArtificialIntelligence
ArtificialIntelligence ArtificialIntelligenceincludingMachine includingDeep
Learning Learning
AlgorithmsusinglargecomplicatedNeuralNetworks
CognitiveTechnologies
ComputerVision
DataAnalytics(Predictive&Prescriptive)
AlgorithmsusingNeuralNetworks
NaturalLanguageProcessing
–CognitiveProcessAutomation(withAI)
BasicDataAnalytics(Descriptive
&Diagnostic)
Automation
RoboticProcessAutomation
BasicAlgorithms
HowWeGotHere
Youcan’thaveMachinelearningwithoutdata.
Itallstartswithdata.Companieshavehistoricallyuseddatatoimprovetheirbusinessperformance(e.g.,customerfeedbacksurveys,planningresourceallocationusingtheCriticalPathMethod,etc.).However,datagatheringwasanexplicit
exerciseandthoseperformingitmightnothavetakenstepstoverifythatthedatacollectedrepresentedwhatwasactuallyhappening.Forexample,itmayhavebeendifficulttodeterminewhethersurveyrespondentstrulyrepresentedthecustomerbaseorwhethertheirbuyinghabitswerefardifferentfromthoseofmoretypicalcustomers.
WiththeInternetandtheevolutiontoadigitalworld,dataacquisitionhasgonefrombeinganexplicitandoftenmanualexercisetoanongoing,automatedpassiveactivity.Websites,appsandsocialmediacantrackeverythingfromyourshoppingbehaviourtoyourheartrate.Manybusinessprocessescanbedigitizedleadingtothecollectionofinformationtohelpreducecosts.Realdatainrealtime.Nosurveysrequiredtobecompletedbyauser,noresponsebias:justfacts.
FromDistributedComputingtoCloudComputing
Withallthispassivedatacollection,datasetshavebecomesomassiveandcomplexthattraditionaldataprocessingsoftwaresimplycannotkeepup.CompaniessuchasGoogle,whosebusinessisbasedondata,setaboutfindingawaytoincreasecomputationalpowerinordertoprocessBigData.Theanswer:DistributedComputing.Ratherthanhavingonesophisticatedcomputerhandlingalldataprocessing,thedataisdividedandsenttohun-dredsorthousandsofcommoditycomputersworkinginconcertbutindependentlythuscuttingdownoverallprocessingtime.
Thissolvedtheproblemforlargetechnologycompanies,butsmallerorganizationsstillhadnowaytoaccessandprocesslargevolumesofdataeffectively.EnterCloudComputing,
arentablenetworkofremoteservershostedontheInternettostore,manageandprocessdata.ThescalabilityofCloudComputinghaseliminatedtheneedtobuyandmaintaincostlycomputersystems;itprovidesaccesstomoreon-demandresourcesandprocessingpowerforeveryone,includingsmallorganizations.Asaresult,allorganizationscannowbenefitfromBigData.
AwordonDataWarehouses,DataLakesandDataSwamps
Howisallthisdatastored?Typically,viaaDataWarehouseoraDataLake.ADataWarehouseisdesignedtostoredataandprovidesbusinessesacentralrepositorytointegrate,manageandanalyzedataatmanylevels.Thedatacancomefrominternaland/orexternalsourcesandislargelystructured.ADataLakeisbothawaytoorganizehugevolumesofwildlydiversedata,bothstruc-turedandmostoftenunstructured,andstoreit.WhenaDataLakebecomesunmanageable,itturnsintoaDataSwamp.
WhenBigDataMeetsAI
ThebasicideabehindAIistoletamachinestatisticallyanalyzeallthedatabeingcollectedtoderiveinsightsmuchfasterandmoreaccuratelythanotherwisepossible.Forexample,ratherthanprogrammingacomputerwithasimplerulesuchas
“50timesthegrowthindataexpectedfrom2010to2020!”9
“morethan12hoursofdaylight=summer;lessthan12hoursofdaylight=winter,”AIanalyzestheparametersofnumeroussummerdays.Usingalgorithmicmodels,itwillthendeterminewhichparametersandatwhatlevelsthoseparametersconsti-tuteasummerday(e.g.,iftemperatureis>18degrees,humidityofx%,etc.).Itwillthenleveragethatunderstandingandbasedonprobabilitiesdeterminewhetheraparticulardayisasummerdayornotbyassessingallthoserelevantparametersagainstwhatithas“l(fā)earned”tobeatypicalsummerday.
ExpertsnowagreethatAIhasevolvedtoapointwhereithasreal,practicalvalue.Thereason?Theconvergenceoffourtrends.Theexplosivegrowthindataismadepossibleby:
digitizationofbusinessprocesses,smartphones,InternetofThings(IoT)andsocialmedia/web2.0
theadvancement(andavailability)inprocessingpowertostoreandcomputedata
thematurityofalgorithmsandAImodels
thehugeupsurgeininvestmentinAI.
/sfamilian/working-with-big-data-jan-2016-part-1/7-CONTEXT_WHATS_BIG_DATABIG_IN
Sowhatdoesallofthismeanforbusinesstoday?
Twoconcepts:improvedproductivityandinnovation.Theseincludesimplificationandautoma-tionoftasksthatfreeupemployeestofocusonmorestimulatingandhighervalue-addingwork.NewinnovativebusinessmodelshavebeenestablishedasaresultofAI,suchasvirtualassistantslikeAlexa,Googleassistantorx.ai.AlthoughnotpopularbeforeAI,theyarenow
amulti-billiondollarindustryatthecentreofthehomeautomationmarket.
Capital-intensivesectorssuchasmanufacturingandtransportationarelikelytoseethelargestproductivitygainsfromAI,giventhatmanyoftheirrepetitiveoperationalprocessesareripeforAI-enabledautomation.10AIrobotsarealreadytakingoverwarehousesacrosstheglobe.AIisalsopoisedtounlockefficienciesinprofessionalservicessuchaslegal,humanresources,accountingandauditwheredataplaysacentralrole.
/Previews/PWC/DocumentAssets/476830.pdf
Withinglobalaccountingandauditingfirms,workisunderwaytogetoutinfrontofandtakeadvantageofthenewparadigmemergingduetoAI.
BDOhassuccessfullypiloteditsBDOLexitranslationapp,usingneuralnetworktechnology,tomanageinformationinmultiplelanguagesduringglobalaudits.
DeloittehaslaunchedOmniaAI,amulti-disciplinarypracticefocusedondeliveryofAIservicesandsolutions.
EYisembeddingAItechnologyacrossitsend-to-endauditprocess,includ-ingtheuseofmachinelearninginEYHelixandEYOptixforpredictiveanalytics,usingdronesforinventoryobservationsandthedevelopmentofbusinessdocument-readingandinterpretationtools.
KPMGhaslauncheditsAItoolkitcalledIgniteandisworkingwithIBM/Watson.
PwCisinvestingindataplatformstosecurelycapture,organizeandfacili-tateanalysisofdataandisworkingwithH2O.ai,aleadingSiliconValleycompany,todevelopAudit.ai,whichwillprovideenhancedcapabilitiestoprovideassurance.
TypesofAI
ThereareessentiallytwokindsofAI:NarrowAIandGeneralAI.Asthenamesuggests,Nar-rowAI,whichcanalsobedescribedasweakAI,ismadeupofnarrowlyintelligentsystemsthatcanexceedhumansinspecifictasks,suchasplayingchessormakingmedicaldiagnoses.Thesenarrowcapabilitiesarenottransferrable(i.e.,anAIchessplayercannotbeusedtoper-formanothertasksuchasamedicaldiagnosis).
GeneralAIorstrongAIreferstohuman-levelintelligencethatisabletotransferknowledgebetweendomains.WhileNarrowAIisallaroundusinlanguageandvisionrecognitionsystemsandrecommendationengines,GeneralAImaybethestuffofsciencefictionandmovies—fornow.
HowAIWorks
InorderforAIprogramstonavigatethroughsituationalcomplexities,differentapproachestocreatingsoftware,withtheabilitytodeterminedifferentoutcomes,arenecessary.
TheLogicandRules-basedapproachusesconditionalinstructionsanddefinedrulestocarryoutataskorsolveaproblemsuchas“ifthis,thenthat.”IthasbeeninpracticeforalongtimeandhasbeentheunderlyingpremiseforAIuntilrecentadvancesinmachinelearninganddeeplearning,whicharetechniqueswithinAI.
Forexample,tocreatesystemstocalculatetaxthroughadigitizeddecision-makingprocess,theLogicandRulesapproachemploysadetailedseriesofcomputerinstructions,includingif/then/elseorprobabilities/weights.ThesedetailedseriesofinstructionsareattheheartofanyAIsystemandareknownasalgorithms.
MachineLearningisthemoreprevalentAIapproachusingalgorithmstoguideitspredic-tions.Itsnameisderivedfromtheabilityofalgorithmsto“l(fā)earn”fromexperience(i.e.,usedatasets)ratherthanrelyingonarules-basedsystem.Thealgorithmscreatecomputationalmodelsthatprocesslargedatasetstopredictoutputsandmakeinferences.Moredataleadstomoreexamples;thishelpsthealgorithmtofinelytuneitsoutputovertime.Inthisway,thealgorithmadjusts—or“l(fā)earns”—bytrialanderror.Eachnovelexampleisanoppor-tunityforthealgorithmtoguesscorrectlyorincorrectlyandlearnfromitsmistakesthususuallyprovidingbetterinsights.Theinsightsarethenfedbacktorefinethealgorithmicmodelsfurtherandmakethemmoreaccurateovertime.Machinelearningisinuseinemailspamfilters,text,imageandvoicerecognitionsystems,searchrankings,spellcheck,andmanymoreapplications.
ACloserLookatMachineLearning
Machinelearningmodelscanbroadlybegroupedintotwotypesofproblems:regressionandclassification.
Regressionproblemsinvolvethepredictionofaquantityorvalue(e.g.,thetaxifaretogofromSantaMonicatodowntownLAduringrushhouronFridaymorning).
Classificationproblemsinvolveclassifyinginput(e.g.,determiningwhetheratransactionistypicaloranomalous).
Threedifferenttechniquesaremostcommonlyusedforamachineto“l(fā)earn”theproblemandbecomesmartatprovidingtheanswer:
SupervisedLearningisamethodtoteachAIsystemsbyexample.Thesystemsareprovidedwithmanypointsofdata.Eachpointistiedtoexpectedoutcomessothatanunderstandingcanstarttodevelopofhowdatarelatestotheexpectedoutcome.Oncetrained,thesystemscantheningestpointsofdataandgiveanoutputthatfitsthelearnedmodel.
Takeaclassificationproblemasanexample.Inthecaseofratingthecreditworthinessofloanapplicants,theAIsystemisprovidedwithdataonthousandsofpastloanapplications,eachonehavingdetailedinformationabouttheprospectiveborrower(i.e.,creditscore,income,maritalstatus,etc.).Becausethedataishistoric,theAIsystemisalsosuppliedwithinformationonwhichloansdefaultedandwhichwererepaidsuc-cessfully.TheAIsystemthenusesstatisticaltechniquestofigureoutasetofrulestodeterminewhenaloanseemstohavegonebadandwhenitdidnot.
Theserulescannowbeappliedtogaugetheprobabilityofanewloanapplicationbeingsuccessfullyrepaidversusnot.Boththeinputandoutputtrainingdataarelabeledsothatoncetrained,theAIsystemcanthenapplywhatithaslearnedtonewdata.Thisprocessshowsthatdecisionsarenotbasedon100%accuracybutonprob-abilitiesinstead.IBMWatson’sdebutontheTVshowJeopardyisanexampleofthis.Whenrespondingtoquestions,Watsoncalculatedprobabilitiesofdifferentanswersandrepliedwiththehighestprobabilityanswer.Thisapproachiscalledsupervisedlearningbecauseanaccuratelyclassifiedtrainingdatasetisusedtosupervisethelearningprocess.
UnsupervisedLearning:Insupervisedlearningthesystemistoldwhichloanswererepaidsuccessfullyandwhichoneswerenotandaskedtoidentifywhattrendsmostaffectedtheoutcome.Ifonlyrawinsightsintothedataarewanted,thecomputerisaskedtofindinsightseffectivelythroughunsupervisedlearning.
Forexample,Netflixmayaskitssystemtofindothercustomerswhoseviewinghabitsaresimilartoyours.Itcanthenusethoseresultstorecommendmoviesthosesimilarcustomersliked.HeretherearenotraineddatasetssuchasaGoodLoanandBadLoanlabel;itisjustaboutlookingatdatatofindclustersofcustomerswhoare“simi-lar,”eventhoughthehumancustomersdidnotspecifywhattheymeantby“similar.”Detectingfraudandanomalyintransactionsoftenfallsinthisrealmbecauseyouareessentiallylookingfortransactionsthatare“nottypical.”
ReinforcementLearningisatechniquebywhichanAIsystemlearnsunderitsownsupervisionwithouttheneedoftraineddatasets.Itmakespredictions,validatesthosepredictionsagainstrealityandcontinuallyadjustsitselftohaveabetteroutputnexttime.Itisinspiredbybehaviouristpsychologyandreferstogoalorreward-orientedalgorithms.
Algorithmsaretrainedtoperformtasksbymaximizingtherewardsorpointsfortheexpectedfavourableoutcomeandcontinuetoexplorenewpossibilities,essentiallythroughtrialanderror,untilthatmaximizedrewardisfound.Forexample,rewardscouldbelinkedtoincreasedvaluesinstockpicking,evaluatingtradingstrategies,pointsinasimulationgameorbeatinganopponentinanadversarialgame.
Moreover,inDeepMind’sAlphaGoZerothesystemlearnedtoplaysimplybyplayinggamesagainstitself,startingfromcompletelyrandomplay.Itquicklysurpassedthehumanlevelofplayanddefeatedthepreviouschampion-defeatingversionofAlphaGoby100gamesto0.11
/blog/alphago-zero-learning-scratch/
Regressionproblemsaresolvedmostlywithsupervisedandreinforcementlearningwhileclassificationproblems,dependingonspecifics,maybeansweredbyusinganyoneofthethreelearningtechniques.
AIAlgorithms
AverageDailyTemp
IceCreamDollarsSpent
Therearedifferentstrategiesusedtoimple-mentthethreedifferenttechniquesdescribedabove.ThesestrategiesareattheheartofwhatallowstheAIsystemto“l(fā)earn”insightsfromthedata.AsaCPAyoumayneverhavetodealwithtechnologyatthislevel,butacursorylookmayprovidesomeappreciationofwhatAIalgorithmsdo.
MostlyBadLoans
MostlyGoodLoans
Applicant’sCreditScore
LoanAmount
Consideraverysimplisticexample.Sayyouhavedataonsalesperdayatanicecreamshopasafunctionofthedailyaverageoftemperature.AnAIsystemcouldidentifyaregressionequationthatprovidesthebestfitfortheprovideddatasetandusethattopre-dictsalesforthenextweekusingprojectedtemperatures.
Mathematically,theproblemisnowaboutfindingacurvethatfitsthegeometryofthecorrelationshownabove.IftheAIsystemfindstheparametersthatdefinedthecurve,itcanpredictanyY($)valuesforagivenX(temperature).
Inclassificationproblems,thecurvewouldtypicallydividetwoclasses(e.g.,goodloansandbadloans).
Source:PwCAnalysis
AIalgorithmsareessentiallyalldesignedtofindtheparametersthatdefinethecurve.
Ofcoursethesesimplecurvesareonlybasedononeortwodimensions.Themorecomplexandmultidimensionalthetask,themorecomplextheAIalgorithm.
WhatistheblackboxofAI?12
Asalgorithmsbecomemorecomplex,itisnotalwaysclearhoworwhyadecisionhasbeenmadebytheAIsystem.
Thelackofinterpretabilityandtransparencyofresultstohumanusers
oftheAIsystemcouldleadtoalackoftrustandlossofconfidenceintheAIsystem.
AIandtheHumanBrain:ATechnicalDiveintoDeepLearning
DeepLearning(alsoknownashierarchicallearning)isasubsetofmachinelearning.ItisanemergingandexcitingformofAIthatcanidentifyrelationshipsandlinkagesinvastvolumesofdatathatwouldbeimpossibleforhumanstoprocessandapplythemtosimilarsitua-tions.Whilestillintheearlystagesofdevelopment,DeepLearninghasthepotentialtotakeautomationtonewlevelsofeffectivenessandimprovedecisionmaking.Buthow?Byusingalgorithmsthatroughlyapproximatethestructuresandfunctionsofthehumanbrain.
Theideaistocreatealgorithmsthatcansimulateanarrayofneuronsinanartificialneuralnetworkthatlearnsfromvastsourcesofdata.Theinterconnectedlayersofnodesorneu-ronsprovidedatatoeachsuccessive
Insimpleterms,DeepLearningisthestackingofalgorithms(bothsupervisedandunsupervisedmodels)ontopofeachotherintomultiplelayers.Thisallowsforcreationofextremelysophisticatedandfinelytunedinput/outputmodels.
layerasanestedhierarchyofcon-ceptsmanylayersdeep.Theconnectionsbetweenthesevirtualneuronsarerepresentedbyanumberorweight.Theseweightsreflecttheimportanceattributedtotheinputdata;thegreatertheweightthemoreimportanttheinputistocarryingoutthedesiredtask.
/emerging-technology/to-open-ai-black-box
Duringthetrainingofneuralnetworks,weightsarevariedandadjusteduntilthedesiredout-comeisarrivedat.Forexample,asshownintheillustrationbelow,whenprocessingthousandsofimagesofhumanfaces,theneuralnetworkrecognizesobjectsbasedonahierarchyofsimplerbuildingblocks:
straightlinesandcurvedlinesatthebasiclevel
theneyes,mouths,andnoses
thenentirefacesand
finally,specificfacialfeatures.
Oncethefirstlevellearnsprimitivefeatures,thisdataisfedtothenextlayer,whichtrainsitselftorecognizemorecomplexfeatures.Theprocessisrepeatedinsuccessivelayersuntilthesystemcanreliablyrecognizeanoseorascar.Trainingthesedeeplearningsystemsrequiresvastamountsofdata;however,thelearningsfromthesesystemscansometimesbereplicatedtoothersituations.Forexample,aneuralnetworktrainedtorecogn
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于中學(xué)生人際關(guān)系(10篇)
- 市場(chǎng)社會(huì)實(shí)踐報(bào)告
- 開學(xué)安全第一課的心得體會(huì)(30篇)
- 2024分布式電站云邊協(xié)同技術(shù)規(guī)范
- 《機(jī)械制造基礎(chǔ)》課件 模塊8 機(jī)械裝配工藝的基礎(chǔ)知識(shí)
- 邏輯推斷題馬于玲
- 國內(nèi)外相似案例研究:錦薈PARK及碧桂園·森林城市
- 勾股定理復(fù)習(xí)課課件
- 16.2《登泰山記》課件 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊(cè)-9
- 江蘇省南京市第29中2025屆高考仿真卷語文試卷含解析
- E英語教程1unit1-5教案
- 學(xué)院培訓(xùn)費(fèi)管理辦法
- GB/T 5231-2001加工銅及銅合金化學(xué)成分和產(chǎn)品形狀
- GB/T 4957-2003非磁性基體金屬上非導(dǎo)電覆蓋層覆蓋層厚度測(cè)量渦流法
- 尿動(dòng)力學(xué)檢查操作指南2023版
- GB/T 27806-2011環(huán)氧瀝青防腐涂料
- GB/T 14124-2009機(jī)械振動(dòng)與沖擊建筑物的振動(dòng)振動(dòng)測(cè)量及其對(duì)建筑物影響的評(píng)價(jià)指南
- GB/T 11170-2008不銹鋼多元素含量的測(cè)定火花放電原子發(fā)射光譜法(常規(guī)法)
- 最新《工會(huì)基礎(chǔ)知識(shí)》試題庫及答案1000題【完美打印版】
- 2023年現(xiàn)行建筑施工規(guī)范目錄
- 工程變更聯(lián)系單【范本模板】
評(píng)論
0/150
提交評(píng)論