版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
UniversityofPennsylvaniaCareyLawSchool
PennCareyLaw:LegalScholarshipRepository
AllFacultyScholarship
FacultyWorks
2-2023
RegulatingMachineLearning:TheChallengeofHeterogeneity
CaryCoglianese
UniversityofPennsylvaniaCareyLawSchool
AuthorORCIDIdentifier:
CaryCoglianese0000-0002-5496-2104
Followthisandadditionalworksat:
/faculty_scholarship
Partofthe
AdministrativeLawCommons
,
ArtificialIntelligenceandRoboticsCommons
,
Public
AdministrationCommons
,
ScienceandTechnologyStudiesCommons
,andthe
TheoryandAlgorithms
Commons
RepositoryCitation
Coglianese,Cary,"RegulatingMachineLearning:TheChallengeofHeterogeneity"(2023).AllFacultyScholarship.2921.
/faculty_scholarship/2921
ThisArticleisbroughttoyouforfreeandopenaccessbytheFacultyWorksatPennCareyLaw:LegalScholarshipRepository.IthasbeenacceptedforinclusioninAllFacultyScholarshipbyanauthorizedadministratorofPennCareyLaw:LegalScholarshipRepository.Formoreinformation,pleasecontact
biddlerepos@
.
REGULATINGMACHINELEARNING:
THECHALLENGEOFHETEROGENEITY
BY
CARYCOGLIANESE
EdwardB.ShilsProfessorofLawandProfessorofPoliticalScience,andDirector,PennProgramonRegulation,UniversityofPennsylvania.
1 ?2023CompetitionPolicyInternationalAllRightsReserved
Electroniccopyavailableat:/abstract=4368604
Electroniccopyavailableat:/abstract=4368604
Machine-learningalgorithmsincreasinglydrivetechnologi-caladvancesthatdelivervaluableimprovementsforsocietyandtheeconomy.Butthesealgorithmsalsoraiseimportantconcerns.Thewaymachine-learningalgorithmsworkau-tonomouslytofindpatternsinlargedatasetshasgivenrisetofearsofaworldthatwillultimatelycedecriticalaspectsofhumancontroltothedictatesofartificialintelligence.Thesefearsseemonlyexacerbatedbytheintrinsicopac-itysurroundinghowmachine-learningalgorithmsachievetheirresults.Toagreaterdegreethanwithotherstatisticaltools,theoutcomesgeneratedbymachinelearningcannotbeeasilyinterpretedandexplained,whichcanmakeithardforthepublictotrustthefairnessofproductsorprocessespoweredbythesealgorithms.
Forthesereasons,theautonomousandopaquequalitiesofmachine-learningalgorithmsmakethesedigitaltoolsbothdistinctiveandamatterofpublicconcern.Butwhenitcomestoregulatingmachinelearning,adifferentqualityofthesealgorithmsmattersmostofall:theirheterogeneity.TheMerriam-WebsterDictionarydefines“heterogeneity”as“thequalityorstateofconsistingofdissimilarordiverseelements.”Machinelearningalgorithms’heterogeneitywillmakeallthedifferenceindecidingwhentoregulatethem,whoshouldregulatethem,andhowtodesignregulationsimposedontheirdevelopmentanduse.
01
MACHINELEARNING’S
HETEROGENEITY
Oneofthemostimportantsourcesofmachinelearning’sheterogeneityderivesfromthehighlydiverseusestowhichitisput.Theseusescouldhardlyvarymorewidely.Con-siderjustasmallsampleofwaysthatdifferententitiesusemachine-learningalgorithms:
Socialmediaplatformsusethemtoselectandhighlightcontentforusers;
Hospitalradiologydepartmentsusethemtodetectcancerinpatients;
Creditcardcompaniesusethemtoidentifypoten-tialfraudulentcharges;
Commercialairlinesusethemtooperateaircraftwithauto-pilotingsystems;
Onlineretailersusethemtomakeproductrecom-mendationstovisitorstotheirwebsites;and
Politicalcampaignsusethemindecidingwhereandhowadvertise.
Evenwithinthesameorganizations,differentmachine-learningalgorithmscanperformdifferentfunctions.Anau-tomobilemanufacturer,forexample,mightuseonetypeofmachine-learningalgorithmtoautomatecertainon-roadoperationsoftheirvehicles,whileusingothermachine-learningalgorithmsaspartofitsmanufacturingprocessesorformanagingitssupplychainandinventory.
Inadditiontotheirvarieduses,machine-learningalgo-rithmscanthemselvestakemanydifferentformsandpos-sessdiversequalities.Thesealgorithmsareoftengroupedintoseveralmaincategories:supervisedlearning,unsuper-visedlearning,semi-supervisedlearning,andreinforcementlearning.Withineachcategory,therangeofalgorithmsandtheirformscanbehighlydiverse.Na?veBayesianmodels,decisiontrees,randomforests,andneuralnetworksarejustafewtypesofsupervisedlearningmodels.1Evenwithinanysingletype,finerpointsabouthoweachmodelgeneratedbyanalgorithmisstructured,nottomentiondifferencesinthedatausedtotrainit,canleadeachapplicationofma-chinelearningalmosttofallwithinacategoryofitsown.
Despitethewidevariationinalgorithms,italsoremainsthatthesamemachine-learningmodelcanbeputtodifferentuseswithinasingleorganization.Forexample,Meta—thecorporationthatownsFacebookandInstagram—hasnot-edthat,eventhoughits“imageclassificationmodelsarealldesignedtopredictwhat’sinagivenimage,theymaybeuseddifferentlyinanintegritysystemthatflagsharm-fulcontentversusarecommendersystemusedtoshowpeoplepoststheymightbeinterestedin.”2
Addedtotheextremevariationinusesanddesignsofal-gorithmsisthefactthat,formanyuses,multipledifferentalgorithmsareusedincombinationwitheachothertosup-portautomatedsystems.Whatmayattimesbereferredtoas“an”algorithmisoftenactuallyasuiteorfamilyofalgo-rithms,integratedintoanautomatedsystemorprocessinamannerdesignedtoperformaspecifiedfunction.Further-more,thesealgorithmsandtheircombinationsareupdatedandchangedovertime,asneworrefinedalgorithmsareshowntodobetter.Today’sChatGPT,forexample,runsonmodelsthataremarkedlydifferentthanearlierlanguagemodels,anditwillonlybeupdated,enhanced,andmodi-fiedrepeatedlyintheyearstocome.
Finally,thesechangesinmachine-learningmodelscomeontopofthefactthatwhenthedataprocessedbyalearning
Differencesofexpertopinionevenexistoverwhatcountsasmachinelearning,withsomedatascientiststreatingformsofwhatothersseeasstandardregressionanalysisasatypeofmachinelearning.
MetaAI,SystemCards,ANewResourceforUnderstandingHowAISystemsWork(Feb.23,2022),
/blog/system-
cards-a-new-resource-for-understanding-how-ai-systems-work/
.
?2023CompetitionPolicyInternationalAllRightsReserved 3
algorithmchanges,thensotoocanitsperformance.Thismeansthat,forsomealgorithms,theirperformancecanbeconstantlyevolvingastheyencounterandprocessnewdata.3
Inshort,machine-learningalgorithmsplacethedefinitionofheterogeneityonsteroids.Thesealgorithmsvarywidelyacrossdifferenttypesanddifferentusesatanygiventime
—andtheyarehighlydynamic,withtheirperformanceevolvingovertime.Allthisheterogeneityholdscrucialimpli-cationsforwhetherandhowmachine-learningalgorithmsshouldberegulated.
02
DECIDINGTOREGULATE
MACHINELEARNING
Thefirstquestiontoask,ofcourse,iswhethermachinelearningneedstoberegulatedatall.4Regulationisatooldesignedtorespondtoandhelpsolvesocialandeconomicproblems.Butbythemselves,machine-learningalgorithmsarejustmathematicalconstructsandcreatenosocialoreconomicproblems.5Iftheywereusedonlyforintellectualpleasure—say,asahobbypursuedbyamathematicallyin-clinedsubsetofthepopulation—thentherewouldsurelybenoneedtoconsiderregulatingthem.Regulatingmachinelearningbecomesatopicofconversationonlywhenitisusedinwaysthathavetangibleeffectsonpeople.
Ifmachinelearningistobeacandidateforregulation,then,itisbecauseoftheusesforwhichitgetsemployed.Thisisnotunlikeotherphysicalmachines.Whenothermachineshavehadconsequentialeffectsonthepublic,theyhave
cometoberegulated.TheNationalHighwayTrafficSafetyAdministration(“NHTSA”),forexample,longagostartingimposingregulatorystandardsondifferentpartsofanauto-mobilenotbecauseofsomethingintrinsicaboutthepartsthemselves,butratherbecauseofhowtheyareusedinve-hiclesandhowthoseusesaffectthesafetyofthevehicle.Machine-learningalgorithmsaremuchthesame.Theyareorwillbecomeobjectsofregulationbecauseofthesystemsinwhichtheyaresituatedandhowtheyultimatelyaffectsystemoutcomesinwaysthattouchpeople’slivesandlive-lihoods.
Becausemachine-learningalgorithmscanbeusedinsomanydifferentways,thismeansthattheregulatoryprob-lemstheycancreatewillvaryquitewidelyaswell.Look-ingacrossahostofdifferentusesofmachinelearning,itispossibletosaythatthepotentialproblemscoverthegamutofclassicmarketfailuresthatjustifyregulation.Machine-learningalgorithmsusedaspartofautomatedpricingsys-temsbyonlineretailers,forexample,maycontributetoanti-competitivebehaviorinthemarketplace.6Machine-learningalgorithmsusedinmedicaltreatmentsandconsumerprod-uctscancontributetothekindofinformationasymmetriesthattypicallyjustifyconsumerprotectionregulation.7Andanypedestrianputatanincreasedriskfromaself-drivingcarshouldeasilybeabletoseeanotherobviousmarketfailure—anexternality—createdbyvehiclesthatoperateautonomouslyusingsensorsandmachine-learningalgo-rithms.
Regulationisoftenjustifiedbymorethanjusttheseclassicmarketfailures.Itcanalsobeused,forexample,asatoolforpreventinginjusticesandprotectingcivilrights,suchaswhenregulationsaimtocombatemploymentdiscrimina-tion.8Groundsexistforregulatingmachinelearningonthisbasisaswell.Whensociety’sprevailingbiaseshavebeenreflectedinthedesignofmachine-learningalgorithmsorinthedataonwhichtheyaretrained,thesealgorithmscanendupreinforcing,ifnotevenexacerbating,existingin-
See,e.g.,JessaBoubker,WhenMedicalDevicesHaveaMindofTheirOwn:TheChallengesofRegulatingArtificialIntelligence,47Am.
J.L.&med.427,434(2021)(indicatingthat,ifanalgorithmiscontinuouslylearning,it“willnotalwaysbeabletopredicthowasoftwareisgoingtoreactinreal-timebasedonnewdata”).
Inposingthequestionintermsofwhetherto“regulatemachinelearning,”Imeantodistinguishitfromthequestionofwhethertoimposeantitrustregulationonthestructuralorotherbusinessdecisionsoffirmsthatrelyheavilyonmachinelearning—namely,theso-calledbigtechfirms.DecidingtoimposeregulatoryscrutinyonmergersandacquisitionsinthebigtechspaceisnotwhatImeanherebyregulatingmachinelearning.Onlyifmachine-learningtoolsarethemselvesdirectlyusedtoimpedecompetitionorconcentratemarketpowerwouldantitrustlawbecomerelevantforregulatingmachinelearninginthesenseImeanhere.
Thisisputtingtotheside,ofcourse,thefactthatprocessingdatausingmachine-learningalgorithmscanresultinexternalitiesfromtheproductionofenergyneededtopowerthenecessarycomputerhardware.
CaryCoglianese&AliciaLai,AntitrustbyAlgorithm,StAn.ComputAtionALAntitruSt,Vol.2,no.1,2022,at4.
Cf.id.at18(describingthedifficultyinsupportingalgorithmicforecastswithintuitiveexplanations,whichmayruninsometensionwithconsumerprotectionprinciplesfavoringdisclosureandtransparency).
See,e.g.,OlatundeC.A.Johnson,BeyondthePrivateAttorneyGeneral:EqualityDirectivesinAmericanLaw,87n.Y.u.L.rev.1339(2012)(providinganoverviewofcivilrightsregulationintheUnitedStates).
4 ?2023CompetitionPolicyInternationalAllRightsReserved
justices.9Machinelearningusedaspartofanemployer’shiringprocess,forexample,canthuscreatetheproblemsthatantidiscriminationregulationhasbeenestablishedtosolve.10
Privacyisanothercivilrightsconcernthatisoftenraisedinthecontextofcallsforregulationofmachinelearning.Oneworrycentersonprotectingtheprivateinformationcontainedintheextensivedataonwhichthesealgorithmsdraw—aswellasensuringindividualnoticeoforconsenttotheuseofsuchinformation.Stillanotherconcernarisesfromtheabilityofmachine-learningalgorithmstomakeaccurateinferencesaboutcertainprivatecharacteristicsthatarenotcontainedinthedatathemselves.Yetanotherconcerncentersonhowmachine-learningalgorithmscanmakepossibletheuseoffacialrecognitionandothertoolsthatcantrackindividu-als’whereaboutsandcontributetofearsofa“surveillancestate.”11
Andthenthereareahostofotherpublicpolicyconcernssur-roundingmachine-learningalgorithmsthatlieattheheartofmanyconversationsaboutregulatingartificialintelligence.12TheavailabilityofChatGPT,forexample,hasraisednewquestionsaboutwhatartificialintelligencemeansforedu-cation.13Socialmediaplatformsusemachine-learningal-gorithmstopushcontenttousersinwaysthataccentuateconflict,keepusersdistracted,ormakethemcravemoretimeontheirsmartphones.14Digitaltoolsdrivenbyma-chine-learningalgorithmscanalsogeneratenewartworkfromexistingworks,raisingquestionsaboutownershiprightsandrulesaboutappropriation.15Thesetoolscanbeusedperniciouslytoo,suchasbyfacilitatingnewoppor-tunitiesforfraudthroughdeepfakes.16Perniciousactors
canalsouseartificialintelligencetopropagatecyberattacksthatthreatenbothdigitalandphysicalassets.17
Asshouldbeevident,theheterogeneoususesformachine-learningalgorithmsleadtoavarietyofregulatoryconcerns.Itissurelyaxiomatictoobservethatwhenthetypesofregulatoryproblemsvary,regulationitselfmustvaryaswelltofitthenatureoftheproblem.Attheveryleast,regulationmustbedesignedinawaythataccommodatesvariationinusesandeithertargetsdiverseproblemsorprovidesappropriateincentivesforregulatedentitiestofindandaddressthoseproblems.18
03
WHOSHOULDREGULATE
MACHINELEARNING?
Beforeturningtohowregulationmightbedesignedtoac-commodatemachinelearning’sheterogeneity,apriorques-tionarisesaboutwhattypeofinstitutionshouldregulatemachinelearning,wheneverthatregulationisjustified.
Withrespecttoothertechnologiesandtheirregulatoryproblems,theneedforregulationtobeadaptedtofitdiffer-entcircumstanceshasledgovernmentstoestablishdiffer-entregulatorybodies,eachtargetingacircumscribedrange
See,e.g.,DorothyRoberts,DigitizingtheCarceralState,132HArv.L.rev.1695,1698(2019)(reviewingvirginiAeubAnkS,AutomAtinginequALitY:HowHigH-teCHtooLSprofiLe,poLiCe,AndpuniSHtHepoor(2018));SandraG.Mayson,Biasin,BiasOut,128YALeL.J.2218(2019).
JeffreyDastin,AmazonScrapsSecretAiRecruitingToolThatShowedBiasAgainstWomen,reuterS(Oct.10,2018,7:04pm),
HttpS://
www.reuterS.Com/ArtiCLe/uS-AmAzon-Com-JobS-AutomAtion-inSigHt/AmAzon-SCrApS-SeCret-Ai-reCruiting-tooL-tHAt-SHowed-biAS-AgAinSt-women-
iduSkCn1mk08g
.
Anumberofjurisdictionshaveprohibitedlawenforcementagenciesfromusingfacialrecognitiontools.SeeCaryCoglianese&KatHefter,FromNegativetoPositiveAlgorithmRights,30wm.&mArYbiLLrtSJ.883,886n.15(2022).
Id.at886-893.
KalleyHuang,AlarmedbyA.I.Chatbots,UniversitiesStartRevampingHowTheyTeach,n.Y.timeS(Jan.16,2023),
https://www.nytimes.
com/2023/01/16/technology/chatgpt-artificial-intelligence-universities.html
.
BarbaraOrtutay&DavidKlepper,FacebookWhistleblowerTestifies:FiveHighlights,ASSoC.preSS(Oct.5,2021),
HttpS://ApnewS.Com/
ArtiCLe/fACebook-frAnCeS-HAugen-CongreSS-teStimonY-Af86188337d25b179153b973754b71A4
.Seegenerallytimwu,tHeAttentionmerCHAntS:tHeepiCSCrAmbLetogetinSideourHeAdS(2016).
ElizabethPenava,AIArtIsinLegalGreyscale,reguL.rev.(Jan.24,2023),
/2023/01/24/penava-ai-art-is-
in-legal-greyscale/
.
toddC.HeLmuS,rAndCorp.,ArtifiCiALinteLLigenCe,deepfAkeS,AnddiSinformAtion:Aprimer(2022).
BlessingGuembe,AmbroseAzeta,SanjayMisra,VictorChukwudiOsamor,LuisFernandez-Sanz&VeraPospelova,TheEmergingThreatofAI-DrivenCyberAttacks:AReview,36AppLiedA.i.1(2022).
Forarelateddiscussion,seeCaryCoglianese,RegulatingNewTech:Problems,Pathways,andPeople,teCHregCHron.,Dec.2021,at65-73.
5
ofproblems.Theproblemscreatedbyanticompetitivebe-havior,afterall,aredifferentthanthosecreatedbyindustrialpollution,whichareinturndifferentthantheproblemsofunsafeandineffectiveconsumerproducts.Asaresult,an-titrustregulatoryinstitutionsexisttotargetanticompetitivebehavior;environmentalregulatorybodiesspecializeinre-ducingpollution;anddrugandconsumersafetyregulatorsaimtoprotectconsumersfromunsafeproducts.Asinglefirmwillneedtocomplywiththeregulationsofseveraldis-tinctregulatorswithrespecttodifferentfacetsofitsopera-tionsandmarketbehavior.
Thesedifferent,specializedregulatorybodieshavethead-vantageoveragenerallegislatureinthattheycandrawuponthespecializedknowledgeneededtoaddressthedif-ferenttypesofproblems,theiroriginsindifferentindustries,andtheireffectsondifferentsubsetsofthepopulation.Thisisnottosaythat,evenwithintheirspecializations,regula-torsdonotconfrontheterogeneity.Onthecontrary,antitrustregulatorsareusuallytaskedwithlookingacrossallsectorsoftheeconomyfordifferentwaysbusinessesmightengageinanticompetitivebehavior.Environmentalregulatorsarecommonlytaskedwithregulatingavarietyoftypesofpollu-tion,suchastotheair,water,andland,andfromamyriadofdifferentbusinesses,largeandsmall.Evenregulatorybod-ieswithrelativelynarrowtargets—suchastheU.S.Nucle-arRegulatoryCommission,whichtargetsasingleindustryfortheimportantbutstillcircumscribedproblemofnuclearsafety19—willfacesomedegreeofheterogeneityinthedif-ferentsourcesofrisksanddifferentscenariosthatmustbeaccountedforifregulationistobeeffective.Nevertheless,becauseofthevalueofspecializedexpertise,nuclearregu-latorsexisttolookatnuclearsafetyandarenotresponsiblefor,say,ensuringthesafetyandsoundnessofbanks.Thisiswhy,asaprescriptivematter,environmentalregulatorsdonotalsoseektocombatanticompetitivemarketconduct,andantitrustregulatorsarenotresponsibleforaddressingpollutionproblems.
Itmaybetemptingtoconcludethatmachine-learningal-gorithmsarelikenuclearpowerplantsandthattheyneedtheirownregulator.Recently,U.S.RepresentativeTedLieu,forexample,hasarguedthat“[w]hatweneedisadedicat-edagencytoregulateA.I.”20Certainly,machine-learningalgorithmsdorequirespecializedskillstounderstandhow
theyworkandhowtheycangoawry.Regulatingmachine-learningalgorithms’impactonanysegmentofsocietyortheeconomywillrequiresophisticatedknowledgeaboutartificialintelligence.Butbecausetheregulatoryproblemsthatmachine-learningalgorithmsareassociatedwithcanbesovaried—andoftensocloselyconnectedtolong-standingregulatoryproblemsthatalreadyhavededicat-edregulatoryinstitutions—itisunrealistictoexpectthatanysingleregulatorcouldeversufficientlyregulatealltheproblematicaspectsofmachinelearning.Regulatingalgo-rithmicstockmarkettradingwillnecessarilyrequiregreatexpertiseaboutfinancialmarkets.Asimilarneedforsub-stantiveexpertisewillapplywhenregulatingtheeffectsofmachine-learningalgorithmsonthesafetyofmedicaldevices,theoperationofautomobiles,andthepricingbe-havioroffirms.NodedicatedAIregulatoryagencycouldpossiblypossessalloftheadditionalrelatedtechnicalknowledgeandcapacityneededtoregulatealgorithms’manyuses.
Itmaybetemptingtoconcludethatmachine-learningalgorithmsarelikenuclearpowerplantsandthattheyneedtheirownregulator
Giventhemanywaysthatmachine-learningalgorithmsareintertwinedwithdifferentproblems,manyofwhichareal-readyaddressedbyexistingregulatorybodies,itisnotsur-prisingthattheseexistingregulatorshavesofartakentheleadinrespondingtopotentialproblemsrelatedtomachinelearning.WithintheDepartmentofTransportation,forex-ample,NHTSAhasissuedregulatoryguidanceforautomo-bilemanufacturersonsafetyassessmentsforautonomousvehicletechnology.21Itorderedthesemanufacturerstofilereportsoncrashesinvolvingtheirautonomousvehicles.22NHTSAalsorecentlyproddedTeslatorecallmorethan350,000ofitsvehiclesoversafetyconcernsrelatedtoitsdriverassistancesoftware.23
AboutNRC,u.S.nuCLeArreguL.Comm’n,
/about-nrc.html
(lastvisitedFeb.4,2023).
TedLieu,I’maCongressmanWhoCodes.A.I.FreaksMeOut.,n.Y.timeS(Jan.23,2023),
/2023/01/23/opinion/
ted-lieu-ai-chatgpt-congress.html
.
U.S.Dep’tTransp.Nat’lHighwayTrafficSafetyAdmin.,FederalAutomatedVehiclesPolicy(Sept.2016),
/sites/
/files/documents/av_policy_guidance_pdf.pdf
.
FirstAmendedStandingGeneralOrder,U.S.Dep’tTransp.Nat’lHighwayTrafficSafetyAdmin.,IncidentReportingforAutomatedDriv-ingSystems(ADS)andLevel2AdvancedDriverAssistanceSystems(ADAS),OrderNo.2021-01(August2021),
/
sites//files/2021-08/First_Amended_SGO_2021_01_Final.pdf
.
NealE.Boudette,TeslatoRecall362,000CarsWithIts“FullSelfDriving”System,n.Y.timeS(Feb.16,2023),
https://www.nytimes.
com/2023/02/16/business/tesla-recall-full-self-driving.html
.
6 ?2023CompetitionPolicyInternationalAllRightsReserved
Separately,theU.S.FoodandDrugAdministration(FDA)hasdevelopedanactionplanforaddressingtheuseofma-chinelearninginmedicaldevices,announcingitwilltreatthemunderaseparatecategoryforinnovativedevices.24In2020,FDAapprovedthefirstAI-basedcardiacultrasoundsoftwareunderthisalternativetrack.25
AsexistingregulatorybodiesgoforwardtoaddressAI-relat-edproblemswithintheirdomains,theywillcertainlyneedtodevelopfurthertheirdatascienceexpertise.Itisnotincon-ceivablethattheycouldbenefitfromacentralizedexpertbodythatcanprovideguidanceandsupport.Already,theNationalInstituteofStandardsandTechnology(NIST)with-intheU.S.DepartmentofCommercehasissuedageneral-izedriskmanagementframeworkforartificialintelligencethatcouldbeofvalueifcustomizedtofittheneedsofothermorespecializedregulatorysettings.26NIST’sframeworkjoinsothersimilardocumentsissuedbyotherfederalenti-ties—suchastheU.S.GovernmentAccountabilityOffice,27theWhiteHouseOfficeofScienceandTechnology,28andtheAdministrativeConferenceoftheUnitedStates29—thatarticulategeneralprinciplestofollowwhenusingmachine-learningtools.ThefederalgovernmenthasalsoestablishedanAICenterofExcellencewithintheGeneralServicesAd-ministration.30
Nevertheless,ashelpfulasthesegeneral,cross-cuttinginitiativesmaybe,existingregulatorsstillneedtobuilduptheirowncapacitytounderstandandregulateAItools,giv-enhowintertwinedtheycanbewithsomanylongstandingregulatoryproblems.Admittedly,evenwithsufficientca-pacitywithinexistingagencies,somekindsofnewprob-lemswillfallthroughthecracks.Illeffectsfromsocialme-diaplatforms’useofalgorithms,forexample,havesofarhaveelidedseriousgovernmentaloversight.Nevertheless,ratherthanhopingthatanewomnibusAIregulatorybodycanswoopintosavethedaybyregulatingallusesofma-chinelearning,policymakerswoulddowelltolookinstead
toempowerexistingcentersofregulatoryexpertise.Wheregapsoroverlapsexistincurrentregulatoryauthority,poli-cymakerscanthenworktofillthosegapsorworkoutanyconflictingjurisdictions.Gapscouldbefilledeitherbycreat-ingnewregulatorybodiesfocusedonunattendedproblemsorbyassigningthosenewproblemstoexistingregulatorswithrelevantexpertise.
04
HOWTOREGULATE
MACHINELEARNING
Nomatterwhichinstitutionstakeresponsibilityforregulat-ingmachinelearning,theywillstillconfrontheterogene-ity.Evenwithinaspecifiedindustryandevenwithrespecttosomeidenticalusesofmachinelearning,heterogeneitywillremainbecauseboththealgorithmsthemselvesandthedatatheyusevarysowidely.Moreover,thealgorithmsandtheautomatedsystemsofwhichtheyareapartarechangingovertime.Asaresult,evenwithinspecializeddomains,regulatorswillneedtopursuemeasuresthattakeintoaccountthevariedanddynamicnatureofthesealgorithms.
Forthisreason,itisimpossibletospecifyatidy,one-size-fits-allformulaforhowregulatorsshouldapproachtheirtaskofregulatingmachinelearning.Butatabroadbrush,itispossibletosaythatregulatorswillneedtoapproachtheirworkwithagility,flexibility,andvigilance.
U.S.Food&DrugAdmin.,ArtificialIntelligenceandMachineLearning(AI/ML)SoftwareasaMedicalDeviceActionPlan(Sept.22,2021),
/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml
-enabl
ed-medi
-
cal-
devices;U.S.Food&DrugAdmin.,ClinicalDecisionSupportSoftwareGuidanceforIndustryandFoodandDrugAdministrationStaff(Sept.28,2022),
/media/109618/download
.
PressRelease,U.S.Food&DrugAdmin.,FDAAuthorizesMarketingofFirstCardiacUltrasoundSoftwareThatUsesArtificialIntelli-gencetoGuideUser(Feb.7,2020),
/news-events/press-announcements/fda-authorizes-marketing-first-cardiac-ultra-
sound-software-uses-artificial-intelligence-guide-user
.
nAt’LinSt.ofStAndArdS&teCH.(niSt),ArtifiCiALinteLLigenCeriSkmAnAgementfrAmework(Jan.2023),/nistpubs/ai/NIST.AI.100-1.pdf.
u.S.gov’tACCountAbiLitYoff.,GAO-21-519SP,ArtifiCiALinteLLigenCe:AnACCountAbiLitYfrAmeworkforfederALAgenCieSAndotHerentitieS
(June2021),
/assets/gao-21-519sp.pdf
.
wHiteHouSeoff.ofSCi.&teCH.poL’Y,bLueprintforAnAibiLLofrigHtS:mAkingAutomAtedSYStemSworkfortHeAmeriCAnpeopLe,
/ostp/ai-bill-of-rights
.
Admin.Conf.oftheU.S.,AdministrativeConferenceStatement#20:AgencyUseofArtificialIntelligence,86Fed.Reg.6616,6616n.1(Jan.22,2021).
gen.ServS.Admin.,ACCeLe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省成都市簡陽市2021年中考語文一診試題及參考答案
- 小學(xué)數(shù)學(xué)五年級上冊小數(shù)乘除法解決問題
- 小學(xué)生一年級20以內(nèi)的加減法練習(xí)題
- 《簡短戒煙干預(yù)技術(shù)》課件
- 《奧斯維辛沒有新聞》課件
- 煤炭銷售代理委托合同三篇
- 自主學(xué)習(xí)環(huán)境的構(gòu)建工作計劃
- 汽車設(shè)計師工作總結(jié)
- 人力資源行業(yè)業(yè)務(wù)員工作總結(jié)
- 線上線下整合營銷策略計劃
- 專項債券培訓(xùn)課件
- 中央企業(yè)人工智能應(yīng)用場景案例白皮書(2024年版)-中央企業(yè)人工智能協(xié)同創(chuàng)新平臺
- 江蘇省蘇州市2024-2025學(xué)年第一學(xué)期八年級歷史期末模擬卷(二)(含答案)
- 甘肅蘭州生物制品研究所筆試題庫
- 醫(yī)院改擴建工程可行性研究報告(論證后)
- 雙方共同招工協(xié)議書(2篇)
- 2021-2022學(xué)年第二學(xué)期《大學(xué)生職業(yè)發(fā)展與就業(yè)指導(dǎo)2》學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 期末檢測試卷(試題)-2024-2025學(xué)年四年級上冊數(shù)學(xué)青島版
- 國家開放大學(xué)電大本科《工程經(jīng)濟與管理》2023-2024期末試題及答案(試卷代號:1141)
- 客車交通安全培訓(xùn)課件
- 醫(yī)院勞務(wù)外包服務(wù)方案(技術(shù)方案)
評論
0/150
提交評論