安徽省銅陵市重點名校2024屆中考押題數(shù)學預測卷含解析_第1頁
安徽省銅陵市重點名校2024屆中考押題數(shù)學預測卷含解析_第2頁
安徽省銅陵市重點名校2024屆中考押題數(shù)學預測卷含解析_第3頁
安徽省銅陵市重點名校2024屆中考押題數(shù)學預測卷含解析_第4頁
安徽省銅陵市重點名校2024屆中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省銅陵市重點名校2024屆中考押題數(shù)學預測卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某工廠現(xiàn)在平均每天比原計劃多生產50臺機器,現(xiàn)在生產600臺所需時間與原計劃生產450臺機器所需時間相同.設原計劃平均每天生產x臺機器,根據(jù)題意,下面所列方程正確的是()A.= B.=C.= D.=2.如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°3.到三角形三個頂點的距離相等的點是三角形()的交點.A.三個內角平分線 B.三邊垂直平分線C.三條中線 D.三條高4.如圖,△ABC是⊙O的內接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數(shù)是()A.45° B.85° C.90° D.95°5.如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B與燈塔P之間的距離為()A.60海里 B.45海里 C.20海里 D.30海里6.如圖,在中,,,,則等于()A. B. C. D.7.若ab<0,則正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標系中的大致圖象可能是()A. B. C. D.8.如圖,AB與⊙O相切于點A,BO與⊙O相交于點C,點D是優(yōu)弧AC上一點,∠CDA=27°,則∠B的大小是()A.27° B.34° C.36° D.54°9.2017年揚中地區(qū)生產總值約為546億元,將546億用科學記數(shù)法表示為()A.5.46×108 B.5.46×109 C.5.46×1010 D.5.46×101110.下列運算正確的是()A.x2?x3=x6 B.x2+x2=2x4C.(﹣2x)2=4x2 D.(a+b)2=a2+b2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,某數(shù)學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.12.在實數(shù)范圍內分解因式:=_________13.已知,在同一平面內,∠ABC=50°,AD∥BC,∠BAD的平分線交直線BC于點E,那么∠AEB的度數(shù)為__________.14.因式分解:9x﹣x2=_____.15.如圖,在平行四邊形中,點在邊上,將沿折疊得到,點落在對角線上.若,,,則的周長為________.16.如圖所示,P為∠α的邊OA上一點,且P點的坐標為(3,4),則sinα+cosα=_____.三、解答題(共8題,共72分)17.(8分)進入防汛期后,某地對河堤進行了加固.該地駐軍在河堤加固的工程中出色完成了任務.這是記者與駐軍工程指揮官的一段對話:通過這段對話,請你求出該地駐軍原來每天加固的米數(shù).18.(8分)某電器商場銷售甲、乙兩種品牌空調,已知每臺乙種品牌空調的進價比每臺甲種品牌空調的進價高20%,用7200元購進的乙種品牌空調數(shù)量比用3000元購進的甲種品牌空調數(shù)量多2臺.求甲、乙兩種品牌空調的進貨價;該商場擬用不超過16000元購進甲、乙兩種品牌空調共10臺進行銷售,其中甲種品牌空調的售價為2500元/臺,乙種品牌空調的售價為3500元/臺.請您幫該商場設計一種進貨方案,使得在售完這10臺空調后獲利最大,并求出最大利潤.19.(8分)有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節(jié)省費用?20.(8分)(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數(shù).(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B的數(shù)量關系以及PB與CD之間的數(shù)量關系,并說明理由.(3)解決問題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請直接寫出CD的長.21.(8分)如圖,點O為Rt△ABC斜邊AB上的一點,以OA為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.求證:AD平分∠BAC;若∠BAC=60°,OA=4,求陰影部分的面積(結果保留π).22.(10分)如圖,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,請僅用無刻度直尺作圖:在圖1中作出圓心O;在圖2中過點B作BF∥AC.23.(12分)某興趣小組進行活動,每個男生都頭戴藍色帽子,每個女生都頭戴紅色帽子.帽子戴好后,每個男生都看見戴紅色帽子的人數(shù)比戴藍色帽子的人數(shù)的2倍少1,而每個女生都看見戴藍色帽子的人數(shù)是戴紅色帽子的人數(shù)的.問該興趣小組男生、女生各有多少人?24.有一項工作,由甲、乙合作完成,合作一段時間后,乙改進了技術,提高了工作效率.圖①表示甲、乙合作完成的工作量y(件)與工作時間t(時)的函數(shù)圖象.圖②分別表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)與工作時間t(時)的函數(shù)圖象.(1)求甲5時完成的工作量;(2)求y甲、y乙與t的函數(shù)關系式(寫出自變量t的取值范圍);(3)求乙提高工作效率后,再工作幾個小時與甲完成的工作量相等?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

設原計劃平均每天生產x臺機器,則實際平均每天生產(x+50)臺機器,根據(jù)題意可得:現(xiàn)在生產600臺所需時間與原計劃生產450臺機器所需時間相同,據(jù)此列方程即可.【詳解】設原計劃平均每天生產x臺機器,則實際平均每天生產(x+50)臺機器,由題意得:.故選B.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程.2、A【解析】

由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【點睛】本題考查了等腰三角形的性質.關鍵是利用等腰三角形的底角相等,外角的性質,內角和定理,列方程求解.3、B【解析】試題分析:根據(jù)線段垂直平分線上的點到兩端點的距離相等解答.解:到三角形三個頂點的距離相等的點是三角形三邊垂直平分線的交點.故選B.點評:本題考查了線段垂直平分線上的點到兩端點的距離相等的性質,熟記性質是解題的關鍵.4、B【解析】

解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點睛】本題考查圓周角定理;圓心角、弧、弦的關系.5、D【解析】

根據(jù)題意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的長,求出答案.【詳解】解:由題意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),

則此時輪船所在位置B處與燈塔P之間的距離為:BP=(海里)故選:D.【點睛】此題主要考查了勾股定理的應用以及方向角,正確應用勾股定理是解題關鍵.6、A【解析】分析:先根據(jù)勾股定理求得BC=6,再由正弦函數(shù)的定義求解可得.詳解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故選:A.點睛:本題主要考查銳角三角函數(shù)的定義,解題的關鍵是掌握勾股定理及正弦函數(shù)的定義.7、D【解析】

根據(jù)ab<0及正比例函數(shù)與反比例函數(shù)圖象的特點,可以從a>0,b<0和a<0,b>0兩方面分類討論得出答案.【詳解】解:∵ab<0,∴分兩種情況:(1)當a>0,b<0時,正比例函數(shù)y=ax數(shù)的圖象過原點、第一、三象限,反比例函數(shù)圖象在第二、四象限,無此選項;(2)當a<0,b>0時,正比例函數(shù)的圖象過原點、第二、四象限,反比例函數(shù)圖象在第一、三象限,選項D符合.故選D【點睛】本題主要考查了反比例函數(shù)的圖象性質和正比例函數(shù)的圖象性質,要掌握它們的性質才能靈活解題.8、C【解析】

由切線的性質可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據(jù)直角三角形兩銳角互余可知∠B=36°.【詳解】解:∵AB與⊙O相切于點A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故選C.考點:切線的性質.9、C【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.【詳解】解:將546億用科學記數(shù)法表示為:5.46×1010,故本題選C.【點睛】本題考查的是科學計數(shù)法,熟練掌握它的定義是解題的關鍵.10、C【解析】

根據(jù)同底數(shù)冪的法則、合并同類項的法則、積的乘方法則、完全平方公式逐一進行計算即可.【詳解】A、x2?x3=x5,故A選項錯誤;B、x2+x2=2x2,故B選項錯誤;C、(﹣2x)2=4x2,故C選項正確;D、(a+b)2=a2+2ab+b2,故D選項錯誤,故選C.【點睛】本題考查了同底數(shù)冪的乘法、合并同類項、積的乘方以及完全平方公式,熟練掌握各運算的運算法則是解題的關鍵二、填空題(本大題共6個小題,每小題3分,共18分)11、(50﹣).【解析】

過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【詳解】解:如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.12、2(x+)(x-).【解析】

先提取公因式2后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續(xù)分解.【詳解】2x2-6=2(x2-3)=2(x+)(x-).

故答案為2(x+)(x-).【點睛】本題考查實數(shù)范圍內的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數(shù)范圍內進行因式分解的式子的結果一般要分到出現(xiàn)無理數(shù)為止.13、65°或25°【解析】

首先根據(jù)角平分線的定義得出∠EAD=∠EAB,再分情況討論計算即可.【詳解】解:分情況討論:(1)∵AE平分∠BAD,

∴∠EAD=∠EAB,

∵AD∥BC,

∴∠EAD=∠AEB,

∴∠BAD=∠AEB,

∵∠ABC=50°,

∴∠AEB=?(180°-50°)=65°.(2)∵AE平分∠BAD,

∴∠EAD=∠EAB=,

∵AD∥BC,

∴∠AEB=∠DAE=,∠DAB=∠ABC,

∵∠ABC=50°,

∴∠AEB=×50°=25°.

故答案為:65°或25°.【點睛】本題考查平行線的性質、角平分線的定義等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.14、x(9﹣x)【解析】試題解析:故答案為點睛:常見的因式分解的方法:提取公因式法,公式法,十字相乘法.15、6.【解析】

先根據(jù)平行線的性質求出BC=AD=5,再根據(jù)勾股定理可得AC=4,然后根據(jù)折疊的性質可得AF=AB=3,EF=BE,從而可求出的周長.【詳解】解:∵四邊形是平行四邊形,∴BC=AD=5,∵,∴AC===4∵沿折疊得到,∴AF=AB=3,EF=BE,∴的周長=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案為6.【點睛】本題考查了平行四邊形的性質,勾股定理,折疊的性質,三角形的周長計算方法,運用轉化思想是解題的關鍵.16、【解析】

根據(jù)正弦和余弦的概念求解.【詳解】解:∵P是∠α的邊OA上一點,且P點坐標為(3,4),∴PB=4,OB=3,OP==5,故sinα==,cosα=,∴sinα+cosα=,故答案為【點睛】此題考查的是銳角三角函數(shù)的定義,解答此類題目的關鍵是找出所求角的對應邊.三、解答題(共8題,共72分)17、300米【解析】

解:設原來每天加固x米,根據(jù)題意,得.去分母,得1200+4200=18x(或18x=5400)解得.檢驗:當時,(或分母不等于0).∴是原方程的解.答:該地駐軍原來每天加固300米.18、(1)甲種品牌的進價為1500元,乙種品牌空調的進價為1800元;(2)當購進甲種品牌空調7臺,乙種品牌空調3臺時,售完后利潤最大,最大為12100元【解析】

(1)設甲種品牌空調的進貨價為x元/臺,則乙種品牌空調的進貨價為1.2x元/臺,根據(jù)數(shù)量=總價÷單價可得出關于x的分式方程,解之并檢驗后即可得出結論;(2)設購進甲種品牌空調a臺,所獲得的利潤為y元,則購進乙種品牌空調(10-a)臺,根據(jù)總價=單價×數(shù)量結合總價不超過16000元,即可得出關于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤=單臺利潤×購進數(shù)量即可得出y關于a的函數(shù)關系式,利用一次函數(shù)的性質即可解決最值問題.【詳解】(1)由(1)設甲種品牌的進價為x元,則乙種品牌空調的進價為(1+20%)x元,由題意,得,解得x=1500,經(jīng)檢驗,x=1500是原分式方程的解,乙種品牌空調的進價為(1+20%)×1500=1800(元).答:甲種品牌的進價為1500元,乙種品牌空調的進價為1800元;(2)設購進甲種品牌空調a臺,則購進乙種品牌空調(10-a)臺,由題意,得1500a+1800(10-a)≤16000,解得≤a,設利潤為w,則w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因為-700<0,則w隨a的增大而減少,當a=7時,w最大,最大為12100元.答:當購進甲種品牌空調7臺,乙種品牌空調3臺時,售完后利潤最大,最大為12100元.【點睛】本題考查了一次函數(shù)的應用、分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)根據(jù)數(shù)量=總價÷單價列出關于x的分式方程;(2)根據(jù)總利潤=單臺利潤×購進數(shù)量找出y關于a的函數(shù)關系式.19、(1)1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸;(2)貨運公司應安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【解析】

(1)設1輛大貨車和1輛小貨車一次可以分別運貨噸和噸,根據(jù)“3輛大貨車與4輛小貨車一次可以運貨18噸、2輛大貨車與6輛小貨車一次可以運貨17噸”列方程組求解可得;(2)因運輸33噸且用10輛車一次運完,故10輛車所運貨不低于10噸,所以列不等式,大貨車運費高于小貨車,故用大貨車少費用就小進行安排即可.【詳解】(1)解:設1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸,依題可得:

,

解得:.

答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸.

(2)解:設大貨車有m輛,則小貨車10-m輛,依題可得:

4m+(10-m)≥33

m≥0

10-m≥0

解得:≤m≤10,

∴m=8,9,10;

∴當大貨車8輛時,則小貨車2輛;

當大貨車9輛時,則小貨車1輛;

當大貨車10輛時,則小貨車0輛;

設運費為W=130m+100(10-m)=30m+1000,

∵k=30〉0,

∴W隨x的增大而增大,

∴當m=8時,運費最少,

∴W=130×8+100×2=1240(元),

答:貨運公司應安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【點睛】考查了二元一次方程組和一元一次不等式的應用,體現(xiàn)了數(shù)學建模思想,考查了學生用方程解實際問題的能力,解題的關鍵是根據(jù)題意建立方程組,并利用不等式求解大貨車的數(shù)量,解題時注意題意中一次運完的含義,此類試題常用的方法為建立方程,利用不等式或者一次函數(shù)性質確定方案.20、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】

(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質得到PB=CD,∠ACD=∠B=45°,于是得到根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質得到,得到ABP∽△CAD,根據(jù)相似三角形的性質得到結論;過A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據(jù)勾股定理得到根據(jù)相似三角形的性質得到,推出△ABP∽△CAD,根據(jù)相似三角形的性質即可得到結論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【點睛】本題考查了等腰直角三角形的性質,全等三角形的判定和性質,相似三角形的判定和性質,勾股定理,熟練掌握相似三角形的判定和性質是解題的關鍵.21、(1)見解析;(2)【解析】試題分析:(1)連接OD,則由已知易證OD∥AC,從而可得∠CAD=∠ODA,結合∠ODA=∠OAD,即可得到∠CAD=∠OAD,從而得到AD平分∠BAC;(2)連接OE、DE,由已知易證△AOE是等邊三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,從而可得∠ADE=∠OAD,由此可得DE∥AO,從而可得S陰影=S扇形ODE,這樣只需根據(jù)已知條件求出扇形ODE的面積即可.試題解析:(1)連接OD.∵BC是⊙O的切線,D為切點,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)連接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE為等邊三角形,∴∠AOE=60°,∴∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論