貴州省織金縣2024年八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
貴州省織金縣2024年八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
貴州省織金縣2024年八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
貴州省織金縣2024年八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
貴州省織金縣2024年八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

貴州省織金縣2024年八年級數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.用配方法解一元二次方程x2﹣4x+2=0,下列配方正確的是()A.(x+2)2=2 B.(x﹣2)2=﹣2 C.(x﹣2)2=2 D.(x﹣2)2=62.如圖,沿直線邊BC所在的直線向右平移得到,下列結(jié)論中不一定正確的是A. B.C. D.3.如圖,△ABC頂點C的坐標(biāo)是(1,-3),過點C作AB邊上的高線CD,則垂足D點坐標(biāo)為()A.(1,0) B.(0,1)C.(-3,0) D.(0,-3)4.如圖,□ABCD的對角線相交于點O,下列式子不一定正確的是()A.AC=BD B.AB=CD C.∠BAD=∠BCD D.AO=CO5.如圖,一艘巡邏船由A港沿北偏西60°方向航行5海里至B島,然后再沿北偏東30°方向航行4海里至C島,則A、C兩港相距()A.4海里 B.海里 C.3海里 D.5海里6.如圖,正方形ABCD中,點E、F、H分別足AB、BC,CD的中點,CE、DF交于G,連接AG、HG.下列論:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=12CEA.1個 B.2個 C.3個 D.4個7.下列函數(shù)中,y隨x增大而減小的是()A.y=x-1 B.y=-2x+3 C.y=2x-1 D.y=8.下列各式,計算結(jié)果正確的是()A.×=10 B.+= C.3-=3 D.÷=39.在對某社會機構(gòu)的調(diào)查中收集到以下數(shù)據(jù),你認(rèn)為最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是()年齡13141525283035其他人數(shù)30533171220923A.平均數(shù) B.眾數(shù) C.方差 D.標(biāo)準(zhǔn)差10.平行四邊形的周長為24cm,相鄰兩邊長的比為3:1,那么這個平行四邊形較短的邊長為()A.6cm B.3cm C.9cm D.12cm二、填空題(每小題3分,共24分)11.根式+1的相反數(shù)是_____.12.如圖,已知矩形ABCD,AB=8,AD=4,E為CD邊上一點,CE=5,P點從點B出發(fā),以每秒1個單位的速度沿著邊BA向終點A運動,連接PE,設(shè)點P運動的時間為t秒,則當(dāng)t的值為______時,∠PAE為等腰三角形?13.如圖,△ABC是邊長為6的等邊三角形,D是AB中點,E是邊BC上一動點,連結(jié)DE,將DE繞點D逆時針旋轉(zhuǎn)60°得DF,連接CF,若CF=,則BE=_________。14.在平行四邊形ABCD中,若∠A+∠C=160°,則∠B=_____.15.如圖,Rt△ABC中,∠ACB=90°,BC=AC=3,點D是BC邊上一點,∠DAC=30°,點E是AD邊上一點,CE繞點C逆時針旋轉(zhuǎn)90°得到CF,連接DF,DF的最小值是___.16.如圖,在矩形中,沿著對角線翻折能與重合,且與交于點,若,則的面積為__________.17.一水塘里有鯉魚、鰱魚共10000尾,一漁民通過多次捕撈試驗后發(fā)現(xiàn),鯉魚出現(xiàn)的頻率為0.36,則水塘有鰱魚________

尾.18.正方形、、、…按如圖所示的方式放置.點、、、…和點、、、…分別在直線和軸上,則點的坐標(biāo)是__________.(為正整數(shù))三、解答題(共66分)19.(10分)感知:如圖①,在平行四邊形中,對角線、交于點.過點的直線分別交邊、于點、.易證:(不需要證明).探究:若圖①中的直線分別交邊、的延長線于點、,其它條件不變,如圖②.求證:.應(yīng)用:在圖②中,連結(jié).若,,,,則的長是__________,四邊形的面積是__________.20.(6分)如圖,在平行四邊形中,已知點在上,點在上,且.求證:.21.(6分)如圖,一次函數(shù)y=kx+b的圖像與反比例函數(shù)y=mx的圖像交于點A(-3,n),(1)求反比例函數(shù)與一次函數(shù)的函數(shù)表達(dá)式(2)請結(jié)合圖像直接寫出不等式kx+b?mx(3)若點P為x軸上一點,△ABP的面積為10,求點P的坐標(biāo),22.(8分)如圖,一次函數(shù)y=-12x+5的圖象l1分別與x軸,y軸交于A、B兩點,正比例函數(shù)的圖象l2(1)求m的值及l(fā)2(2)求得SΔAOC-S(3)一次函數(shù)y=kx+1的圖象為l3,且l1,l2,l323.(8分)按要求解不等式(組)(1)求不等式的非負(fù)整數(shù)解.(2)解不等式組,并把它的解集在數(shù)軸上表示出來.24.(8分)如圖,在四邊形ABCD中,AD∥BC,AB=3,BC=5,連接BD,∠BAD的平分線分別交BD、BC于點E、F,且AE∥CD(1)求AD的長;(2)若∠C=30°,求CD的長.25.(10分)在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸負(fù)半軸交于點,與軸正半軸交于點,點為直線上一點,,點為軸正半軸上一點,連接,的面積為1.(1)如圖1,求點的坐標(biāo);(2)如圖2,點分別在線段上,連接,點的橫坐標(biāo)為,點的橫坐標(biāo)為,求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);(3)在(2)的條件下,如圖3,連接,點為軸正半軸上點右側(cè)一點,點為第一象限內(nèi)一點,,,延長交于點,點為上一點,直線經(jīng)過點和點,過點作,交直線于點,連接,請你判斷四邊形的形狀,并說明理由.26.(10分)如圖1,為美化校園環(huán)境,某校計劃在一塊長為20m,寬為15m的長方形空地上修建一條寬為a(m)的甬道,余下的部分鋪設(shè)草坪建成綠地.(1)甬道的面積為m2,綠地的面積為m2(用含a的代數(shù)式表示);(2)已知某公園公司修建甬道,綠地的造價W1(元),W2(元)與修建面積S之間的函數(shù)關(guān)系如圖2所示.①園林公司修建一平方米的甬道,綠地的造價分別為元,元.②直接寫出修建甬道的造價W1(元),修建綠地的造價W2(元)與a(m)的關(guān)系式;③如果學(xué)校決定由該公司承建此項目,并要求修建的甬道寬度不少于2m且不超過5m,那么甬道寬為多少時,修建的甬道和綠地的總造價最低,最低總造價為多少元?

參考答案一、選擇題(每小題3分,共30分)1、C【解析】

按照配方法的步驟:移項,配方(方程兩邊都加上4),即可得出選項.【詳解】解:x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,(x﹣2)2=2,故選:C.【點睛】本題主要考查配方法,掌握完全平方公式是解題的關(guān)鍵.2、C【解析】

由平移的性質(zhì),結(jié)合圖形,對選項進(jìn)行一一分析,選擇正確答案.【詳解】沿直線邊BC所在的直線向右平移得到,,,,,,,,但不能得出,故選C.【點睛】本題考查了平移的基本性質(zhì):平移不改變圖形的形狀和大?。唤?jīng)過平移,對應(yīng)點所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.3、A【解析】

根據(jù)在同一平面內(nèi),垂直于同一直線的兩直線平行可得CD∥y軸,再根據(jù)平行于y軸上的點的橫坐標(biāo)相同解答.【詳解】如圖,∵CD⊥x軸,∴CD∥y軸,∵點C的坐標(biāo)是(1,-3),∴點D的橫坐標(biāo)為1,∵點D在x軸上,∴點D的縱坐標(biāo)為0,∴點D的坐標(biāo)為(1,0).故選:A.【點睛】本題考查了坐標(biāo)與圖形性質(zhì),比較簡單,作出圖形更形象直觀.4、A【解析】

根據(jù)平行四邊形的性質(zhì)逐項判斷即可得.【詳解】A、平行四邊形的對角線不一定相等,則不一定正確,此項符合題意B、平行四邊形的兩組對邊分別相等,則一定正確,此項不符題意C、平行四邊形的兩組對角分別相等,則一定正確,此項不符題意D、平行四邊形的兩對角線互相平分,則一定正確,此項不符題意故選:A.【點睛】本題考查了平行四邊形的性質(zhì),熟記平行四邊形的性質(zhì)是解題關(guān)鍵.5、B【解析】

連接AC,根據(jù)方向角的概念得到∠CBA=90°,根據(jù)勾股定理計算即可.【詳解】解:如圖,連接AC,由題意得,∠CBA=90°,∴AC==(海里),故選B.【點睛】本題考查了勾股定理的應(yīng)用和方向角問題,熟練掌握勾股定理、正確標(biāo)注方向角是解題的關(guān)鍵.6、C【解析】

連接AH,由四邊形ABCD是正方形與點E、F、H分別是AB、BC、CD的中點,易證得△BCE≌△CDF與△ADH≌△DCF,根據(jù)全等三角形的性質(zhì),易證得CE⊥DF與AH⊥DF,根據(jù)垂直平分線的性質(zhì),即可證得AG=AD,由直角三角形斜邊上的中線等于斜邊的一半,即可證得HG=12AD,根據(jù)等腰三角形的性質(zhì),即可得∠CHG=∠DAG【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵點E、F、H分別是AB、BC、CD的中點,∴BE=CF,在△BCE與△CDF中,BE=CF∴△BCE≌△CDF(SAS),∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正確;在Rt△CGD中,H是CD邊的中點,∴HG=12CD=12連接AH,如圖:同理可證得:AH⊥DF,∵HG=HD=12CD∴DK=GK,∴AH垂直平分DG,∴AG=AD,GH=DH,故②正確;∴∠DAG=2∠DAH,在△ADH與△CDF中,DH=CF∠ADH=∠DCF∴△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,又∵AH垂直平分DG,∴∠DAH=∠GAH,∠DAG=2∠DAH,∴∠CHG=∠DAG.故③正確;故選:C.【點睛】此題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形的性質(zhì)以及垂直平分線的性質(zhì)等知識.此題綜合性很強,難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.7、B【解析】

∵函數(shù)(y=kx+b)中y隨x增大而減小,∴k<0,∵只有B選項k=-2<0,其它選項都大于0,∴B選項是正確.故選B.8、D【解析】分析:根據(jù)二次根式的加減法對B、C進(jìn)行判斷;根據(jù)二次根式的乘法法則對A進(jìn)行判斷;根據(jù)二次根式的除法法則對D進(jìn)行判斷.詳解:A、原式=,所以A選項錯誤;B、與不是同類二次根式,不能合并,所以B選項錯誤;C、原式=2,所以C選項錯誤;D、原式=,所以D選項正確.故選:D.點睛:本題考查了二次根式的運算:先把二次根式化為最簡二次根式,然后進(jìn)行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.9、B【解析】分析:根據(jù)平均數(shù)的意義,眾數(shù)的意義,方差的意義進(jìn)行選擇.詳解:由于14歲的人數(shù)是533人,影響該機構(gòu)年齡特征,因此,最能夠反映該機構(gòu)年齡特征的統(tǒng)計量是眾數(shù).故選B.點睛:本題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\用.10、B【解析】

設(shè)平行四邊形較短的邊長為x,根據(jù)平行四邊形的性質(zhì)和已知條件列出方程求解即可【詳解】解:設(shè)平行四邊形較短的邊長為x,∵相鄰兩邊長的比為3:1,∴相鄰兩邊長分別為3x、x,∴2x+6x=24,即x=3cm,故選B.【點睛】本題主要考查平行四邊形的性質(zhì),根據(jù)性質(zhì),設(shè)出未知數(shù),列出方程是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【解析】

本題考查了實數(shù)的性質(zhì),在一個數(shù)的前面加上負(fù)號就是這個數(shù)的相反數(shù).【詳解】解:+1的相反數(shù)是﹣﹣1,故答案為:﹣﹣1.【點睛】本題考查了實數(shù)的性質(zhì),在一個數(shù)的前面加上負(fù)號就是這個數(shù)的相反數(shù).12、3或2或.【解析】

根據(jù)矩形的性質(zhì)求出∠D=90°,AB=CD=8,求出DE后根據(jù)勾股定理求出AE;過E作EM⊥AB于M,過P作PQ⊥CD于Q,求出AM=DE=3,當(dāng)EP=EA時,AP=2DE=6,即可求出t;當(dāng)AP=AE=5時,求出BP=3,即可求出t;當(dāng)PE=PA時,則x2=(x-3)2+42,求出x,即可求出t.【詳解】∵四邊形ABCD是長方形,∴∠D=90°,AB=CD=8,∵CE=5,∴DE=3,在Rt△ADE中,∠D=90°,AD=4,DE=3,由勾股定理得:AE==5;過E作EM⊥AB于M,過P作PQ⊥CD于Q,則AM=DE=3,若△PAE是等腰三角形,則有三種可能:當(dāng)EP=EA時,AP=2DE=6,所以t==2;當(dāng)AP=AE=5時,BP=8?5=3,所以t=3÷1=3;當(dāng)PE=PA時,設(shè)PA=PE=x,BP=8?x,則EQ=5?(8?x)=x?3,則x2=(x?3)2+42,解得:x=,則t=(8?)÷1=,綜上所述t=3或2或時,△PAE為等腰三角形.故答案為:3或2或.【點睛】此題考查矩形的性質(zhì),等腰三角形的判定,解題關(guān)鍵在于利用勾股定理進(jìn)行計算.13、1或2【解析】

當(dāng)DF在CD右側(cè)時,取BC中點H,連接FH交CD于M,連接DH,CD??勺C△FDH≌△EDB,再證△CHM≌△DHM,推出MH⊥CD,由勾股定理可得FM,由中位線可得MH,進(jìn)而可計算FH,由全等可得FH=BE。同理可求DF在CD左側(cè)時,F(xiàn)H的值,進(jìn)而求BE的值?!驹斀狻咳鐖D當(dāng)DF在CD右側(cè)時,取BC中點H,連接FH交CD于M,連接DH,CD。易證△BDH是等邊三角形,DH=BD,∠FDH=∠EDB,DF=DE∴△FDH≌△EDB∴FH=BE,∠FHD=∠B=60°在等邊△BDH中∠DHB=60°∴∠CHF=60°∴MH=MH,∠CHM=∠MHD=60°,DH=CH,∴△CHM≌△DHM∴CM=DM,∵CM=DM,CH=BH∴MH//BD,∵CD⊥AB∴MH⊥CD∴∠CMF=90°∴∴∴BE==1同理可證,當(dāng)DF在CD左側(cè)時BE==2綜上所訴,BE=1或2【點睛】靈活構(gòu)造三角形全等,及中位線,勾股定理,等邊三角形的性質(zhì)是解題的關(guān)鍵。14、100°【解析】

由平行四邊形的性質(zhì)得出對角相等,鄰角互補,∠A=∠C,∠A+∠B=180°,由∠A+∠C=160°,得出∠A=∠C=80°,即可求出∠B.【詳解】解:∵四邊形ABCD是平行四邊形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B=180°﹣∠A=100°;故答案為:100°.【點睛】本題考查了平行四邊形的性質(zhì);熟練掌握平行四邊形的對角相等,鄰角互補的性質(zhì)是解決問題的關(guān)鍵.15、.【解析】

先依據(jù)條件判定△ACE≌△BCF,可得∠CBF=∠CAE=30°,即可得到點F在射線BF上,由此可得當(dāng)DF⊥BF時,DF最小,依據(jù)∠DBF=30°,即可得到DF=BD=【詳解】由旋轉(zhuǎn)可得,F(xiàn)C=EC,∠ECF=90°,又∵∠ACB=90°,BC=AC=3,∴∠CAE=∠CBF,∴△ACE≌△BCF,∴∠CBF=∠CAE=30°,∴點F在射線BF上,如圖,當(dāng)DF⊥BF時,DF最小,又∵Rt△ACD中,∠CAD=30°,AC=3=BC,∴CD=,∴BD=3﹣,又∵∠DBF=30°,∴DF=BD=,故答案為.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,得到點F的運動軌跡是本題的難點.16、【解析】

由矩形的性質(zhì)及翻折變換先證AF=CF,再在Rt△CDF中利用勾股定理求出CF的長,可通過S△AFC=AF?CD求出△ACF的面積.【詳解】∵四邊形ABCD為矩形,

∴∠D=90°,AD∥BC,CD=AB=1,AD=BC=3,

∴∠FAC=∠ACB,

又∵∠B沿著對角線AC翻折能與∠E重合,

∴∠ACB=∠ACF,

∴∠FAC=∠ACF,

∴FA=FC,

在Rt△DFC中,

設(shè)FC=x,則DF=AD-AF=3-x,

∵DF2+CD2=CF2,

∴(3-x)2+12=x2,

解得,x=,

∴AF=,

∴S△AFC=AF?CD

=××1

=.故答案是:.【點睛】考查了矩形的性質(zhì),軸對稱稱的性質(zhì),勾股定理,三角形的面積等,解題關(guān)鍵是要先求出AF的長,轉(zhuǎn)化為求FC的長,在Rt△CDF中利用勾股定理求得.17、1【解析】

由于水塘里有鯉魚、鰱魚共10000尾,而鯉魚出現(xiàn)的頻率為0.36,由此得到水塘有鰱魚的頻率,然后乘以總數(shù)即可得到水塘有鰱魚又多少尾.【詳解】∵水塘里有鯉魚、鰱魚共10000尾,

一漁民通過多次捕撈實驗后發(fā)現(xiàn),鯉魚出現(xiàn)的頻率為0.36,

∴鰱魚出現(xiàn)的頻率為64%,

∴水塘有鰱魚有10000×64%=1尾.

故答案是:1.【點睛】考查了利用頻率估計概率的思想,首先通過實驗得到事件的頻率,然后即可估計事件的概率.18、【解析】分析:由圖和條件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的橫坐標(biāo)為An+1的橫坐標(biāo),縱坐標(biāo)為An的縱坐標(biāo),又An的橫坐標(biāo)數(shù)列為An=2n-1-1,所以縱坐標(biāo)為(2n-1),然后就可以求出Bn的坐標(biāo)為[A(n+1)的橫坐標(biāo),An的縱坐標(biāo)].詳解:由圖和條件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),∴Bn的橫坐標(biāo)為An+1的橫坐標(biāo),縱坐標(biāo)為An的縱坐標(biāo),又An的橫坐標(biāo)數(shù)列為An=2n-1-1,所以縱坐標(biāo)為2n-1,∴Bn的坐標(biāo)為[A(n+1)的橫坐標(biāo),An的縱坐標(biāo)]=(2n-1,2n-1).故答案為(2n-1,2n-1).點睛:本題主要考查函數(shù)圖象上點的坐標(biāo)特征及正方形的性質(zhì),解決這類問題首先要從簡單圖形入手,抓住隨著“編號”或“序號”增加時,后一個圖形與前一個圖形相比,在數(shù)量上增加(或倍數(shù))情況的變化,找出數(shù)量上的變化規(guī)律,從而推出一般性的結(jié)論.三、解答題(共66分)19、探究:證明見解析;應(yīng)用:10,26【解析】

探究:根據(jù)平行四邊形的性質(zhì)得到AB∥CD,OB=OD,根據(jù)AAS可證明△BOE≌△DOF.應(yīng)用:根據(jù)平行四邊形的性質(zhì)、梯形的面積公式計算即可.【詳解】探究:如圖②.∵四邊形ABCD是平行四邊形,∴AD∥BC,OD=OB,∴∠ODF=∠OBE,∠E=∠F.在△BOE和△DOF中,∵,∴△BOE≌△DOF(AAS).應(yīng)用:∵∠ADB=90°,AB=10,AD=6,∴BD1.∵BE=BC,BC=AD=6,∴BE=2.∵AD∥BE,∴BD⊥CE.在Rt△OBE中,OBBD=4,BE=2,∴OE=5,由探究得:△BOE≌△DOF,∴OE=OF=5,∴EF=10,四邊形AEBD的面積26.故答案為:10,26.【點睛】本題是四邊形的綜合題,考查的是平行四邊形的性質(zhì)、勾股定理、梯形的面積計算,掌握平行四邊形的性質(zhì)定理是解題的關(guān)鍵.20、證明見解析.【解析】

由“平行四邊形ABCD的對邊平行且相等”的性質(zhì)推知AB=CD,AB∥CD.然后根據(jù)圖形中相關(guān)線段間的和差關(guān)系求得BE=FD,易證四邊形EBFD是平行四邊形.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD.∵AE=CF.∴BE=FD,BE∥FD,∴四邊形EBFD是平行四邊形,∴DE=BF.【點睛】本題考查了平行四邊形的判定與性質(zhì).平行四邊形的判定方法共有五種,應(yīng)用時要認(rèn)真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.21、(1)y=6x;y=x+1;(2)-3≤x<0或x≥2;(3)點P的坐標(biāo)為(3,0)或(-5,【解析】

(1)根據(jù)反比例函數(shù)y=mx的圖象經(jīng)過B(2,3),利用待定系數(shù)法即可求出反比例函數(shù)的解析式;進(jìn)而求得A的坐標(biāo),根據(jù)A、(2)根據(jù)A、B的坐標(biāo),結(jié)合圖象即可求得;(3)根據(jù)三角形面積求出DP的長,根據(jù)D的坐標(biāo)即可得出P的坐標(biāo).【詳解】解:(1)∵反比例函數(shù)y=mx的圖象經(jīng)過∴m=2×3=6.∴反比例函數(shù)的解析式為y=6∵A(-3,n)在y=6x上,所以∴A的坐標(biāo)是(-3,-2).把A(-3,-2)、B(2,3)代入y=kx+b.得:-3k+b=-22k+b=3解得k=1b=1∴一次函數(shù)的解析式為y=x+1.(2)由圖象可知:不等式kx+b?mx的解集是-3?x<0或(3)設(shè)直線與x軸的交點為D,∵把y=0代入y=x+1得:0=x+1,x=-1,∴D的坐標(biāo)是(-1,0),∵P為x軸上一點,且ΔABP的面積為10,A(-3,-2),B(2,3),∴1∴DP=4,∴當(dāng)P在負(fù)半軸上時,P的坐標(biāo)是(-5,0);當(dāng)P在正半軸上時,P的坐標(biāo)是(3,0),即P的坐標(biāo)是(-5,0)或(3,0).【點睛】本題考查了用待定系數(shù)法求一次函數(shù)的解析式,一次和圖象上點的坐標(biāo)特征,三角形的面積的應(yīng)用,主要考查學(xué)生的計算能力.22、(1)m=52;y=32x;(2)252;(3)【解析】

(1)由y=-12x+5求出點C(2)分別求出ΔAOC,ΔBOC的面積即可;(3)l3∥l1,l3∥【詳解】解:(1)∵點Cm,154∴把Cm,154代入y=-1設(shè)l2的解析式為y=ax,將點C52,∴l(xiāng)2的解析式為(2)y=-12x+5=0時,x=10,所以A(10,0),B(0,5),即OA=10,OB=5,由C52,154可知點C到S(3)由題意可得l3∥l1,當(dāng)l3∥l1時,k=-12,當(dāng)l3∥l2時,k=32所以當(dāng)l1,l2,l3可以圍成三角形時k的取值范圍為k≠-12【點睛】本題考查了一次函數(shù),包括待定系數(shù)法求解析式及函數(shù)圖像圍成三角形的面積,正確理解題意,做到數(shù)形結(jié)合是解題的關(guān)鍵.23、(1)非負(fù)整數(shù)解為1、2、3、4;(2)-3<x≤1,數(shù)軸上表示見解析【解析】

(1)根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得.(2)分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】(1)5(2x+1)≤3(3x-2)+15,10x+5≤9x-6+15,10x-9x≤-6+15-5,x≤4,則不等式的非負(fù)整數(shù)解為1、2、3、4;(2)解不等式2(x-3)<4x,得:x>-3,解不等式,得:x≤1,則不等式組的解集為-3<x≤1,將不等式組的解集表示在數(shù)軸上如下:【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.24、(1)2;(2)【解析】分析:(1)根據(jù)等角對等邊即可證得BF=AB,然后根據(jù)FC=BC-BF即可求解;(2)過B作AF的垂線BG,垂足為H.由(1)得:四邊形AFCD為平行四邊形且AB=BF=3,在RT△BHF中求得BH的長,利用勾股定理即可求解.

詳解:(1)AD∥BC,AE∥CD,∴四邊形AFCD是平行四邊形∴AD=CF∵AF平分∠BAD∴∠BAF=∠DAF∵AD∥BC∴∠DAF=∠AFB∴∠BAF=∠AFB∴AB=BF∵AB=3,BC=5∴BF=3∴FC=5-3=2∴AD=2.(2)如圖,過點B作BH⊥AF交AF于H由(1)得:四邊形AFCD為平行四邊形且AB=BF=3,∴AF=CD,AF∥CD∴FH=AH,∠AFB=∠C∵∠C=30°∴∠HFB=30°∴BF=2BH∵BF=3∴BH=∴FH=,∴AF=2×=3∴CD=3.點睛:本題考查了平行四邊形的性質(zhì)與判定,勾股定理的應(yīng)用,解本題的關(guān)鍵是正確的作出輔助線.25、(1)B(6,0);(2)d=;(3)四邊形是矩形,理由見解析【解析】

(1)作DL⊥y軸垂足為L點,DI⊥AB垂足為I,證明△DLC≌△AOC,求得D(2,12),再由S△ABD=AB?DI=1,求得OB=AB?AO=8?2=6,即可求B坐標(biāo);

(2)設(shè)∠MNB=∠MBN=α,作NK⊥x軸垂足為K,MQ⊥AB垂足為Q,MP⊥NK,垂足為P;證明四邊形MPKQ為矩形,再證明△MNP≌△MQB,求出BD的解析式為y=?3x+18,MQ=d,把y=d代入y=?3x+18得d=?3x+18,表達(dá)出OQ的值,再由OQ=OK+KQ=t+d,可得d=?;

(3)作NW⊥AB垂足為W,證明△ANW≌△CAO,根據(jù)邊的關(guān)系求得N(4,2);延長NW到Y(jié),使NW=WY,作NS⊥YF,再證明△FHN≌△FSN,可得SF=FH=,NY=2+2=4;設(shè)YS=a,F(xiàn)Y=FN=a+,在Rt△NYS和Rt△FNS中利用勾股定理求得FN;在Rt△NWF中,利用勾股定理求出WF=6,得到F(10,0);設(shè)GF交y軸于點T,設(shè)FN的解析式為y=px+q

(p≠0)把F(10,0)N(4,2)代入即可求出直線FN的解析式,聯(lián)立方程組得到G點坐標(biāo);把G點代入得到y(tǒng)=x+3,可知R(4,0),證明△GRA≌△EFR,可得四邊形AGFE為平行四邊形,再由∠AGF=180°?∠CGF=90°,可證明平行四邊形AGFE為矩形.【詳解】解:(1)令x=0,y=6,令y=0,x=?2,

∴A(?2,0),B(0,6),

∴AO=2,CO=6,

作DL⊥y軸垂足為L點,DI⊥AB垂足為I,

∴∠DLO=∠COA=90°,∠DCL=∠ACO,DC=AC,

∴△DLC≌△AOC(AAS),

∴DL=AO=2,

∴D的橫坐標(biāo)為2,

把x=2代入y=3x+6得y=12,

∴D(2,12),

∴DI=12,

∵S△ABD=AB?DI=1,

∴AB=8;

∵OB=AB?AO=8?2=6,

∴B(6,0);

(2)∵OC=OB=6,

∴∠OCB=∠CBO=45°,

∵M(jìn)N=MB,

∴設(shè)∠MNB=∠MBN=α,

作NK⊥x軸垂足為K,MQ⊥AB垂足為Q,MP⊥NK,垂足為P;

∴∠NKB=∠MQK=∠MPK=90°,

∴四邊形MPKQ為矩形,

∴NK∥CO,MQ=PK;

∵∠KNB=90°?45°=45°,

∴∠MNK=45°+α,∠MBQ=45°+α,

∴∠MNK=∠MBQ,

∵M(jìn)N=MB,∠NPM=∠MQB=90°,

∴△MNP≌△MQB(AAS),

∴MP=MQ;

∵B(6,0),D(2,12),

∴設(shè)BD的解析式為y=kx+b(k≠0),

∴,解得:k=-3,b=18,

∴BD的解析式為y=?3x+18,

∵點M的縱坐標(biāo)為d,

∴MQ=MP=d,把y=d代入y=?3x+18得d=?3x+18,

解得x=,

∴OQ=;

∵N的橫坐標(biāo)為t,

∴OK=t,

∴OQ=OK+KQ=t+d,

∴=t+d,

∴d=;

(3)作NW⊥AB垂足為W,

∴∠NWO=90°,

∵∠ACN=45°+∠ACO,∠ANC=45°+∠NAO,

∵∠ACO=∠NAO,

∴∠ACN=∠ANC,

∴AC=AN,

又∵∠ACO=∠NAO,∠AOC=∠NOW=90°,

∴△ANW≌△CAO(AAS),

∴AO=NW=2,

∴WB=NW=2,

∴OW=OB?WB=6?2=4,

∴N(4,2);

延長NW到Y(jié),使NW=WY,∴△NFW≌△YFW(SAS)∴NF=Y(jié)F,∠NFW=∠YFW,

又∵∠HFN=2∠NFO,

∴∠HFN=∠YFN,

作NS⊥YF,

∵∠FH⊥NH,

∴∠H=∠NSF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論