2023-2024學(xué)年浙江省金蘭教育合作組織高三第三次測評數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年浙江省金蘭教育合作組織高三第三次測評數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年浙江省金蘭教育合作組織高三第三次測評數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年浙江省金蘭教育合作組織高三第三次測評數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年浙江省金蘭教育合作組織高三第三次測評數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年浙江省金蘭教育合作組織高三第三次測評數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設(shè)計和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項中與該塔的實際高度最接近的是()A.400米 B.480米C.520米 D.600米2.如圖,這是某校高三年級甲、乙兩班在上學(xué)期的5次數(shù)學(xué)測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學(xué)成績平均分的平均水平高于乙班B.甲班的數(shù)學(xué)成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學(xué)成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學(xué)測試的總平均分是1033.《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗,根據(jù)測驗結(jié)果繪制了雷達(dá)圖(如圖,每項指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲4.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.5.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.6.已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若集合,,則下列結(jié)論正確的是()A. B. C. D.8.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.9.設(shè)雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.610.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.a(chǎn)c<bc D.11.如圖,在中,,且,則()A.1 B. C. D.12.已知復(fù)數(shù),滿足,則()A.1 B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.連續(xù)擲兩次骰子,分別得到的點數(shù)作為點的坐標(biāo),則點落在圓內(nèi)的概率為______________.14.函數(shù)的最小正周期為________;若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為________.15.設(shè)函數(shù),則滿足的的取值范圍為________.16.函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.18.(12分)在孟德爾遺傳理論中,稱遺傳性狀依賴的特定攜帶者為遺傳因子,遺傳因子總是成對出現(xiàn)例如,豌豆攜帶這樣一對遺傳因子:使之開紅花,使之開白花,兩個因子的相互組合可以構(gòu)成三種不同的遺傳性狀:為開紅花,和一樣不加區(qū)分為開粉色花,為開白色花.生物在繁衍后代的過程中,后代的每一對遺傳因子都包含一個父系的遺傳因子和一個母系的遺傳因子,而因為生殖細(xì)胞是由分裂過程產(chǎn)生的,每一個上一代的遺傳因子以的概率傳給下一代,而且各代的遺傳過程都是相互獨立的.可以把第代的遺傳設(shè)想為第次實驗的結(jié)果,每一次實驗就如同拋一枚均勻的硬幣,比如對具有性狀的父系來說,如果拋出正面就選擇因子,如果拋出反面就選擇因子,概率都是,對母系也一樣.父系?母系各自隨機(jī)選擇得到的遺傳因子再配對形成子代的遺傳性狀.假設(shè)三種遺傳性狀,(或),在父系和母系中以同樣的比例:出現(xiàn),則在隨機(jī)雜交實驗中,遺傳因子被選中的概率是,遺傳因子被選中的概率是.稱,分別為父系和母系中遺傳因子和的頻率,實際上是父系和母系中兩個遺傳因子的個數(shù)之比.基于以上常識回答以下問題:(1)如果植物的上一代父系?母系的遺傳性狀都是,后代遺傳性狀為,(或),的概率各是多少?(2)對某一植物,經(jīng)過實驗觀察發(fā)現(xiàn)遺傳性狀具有重大缺陷,可人工剔除,從而使得父系和母系中僅有遺傳性狀為和(或)的個體,在進(jìn)行第一代雜交實驗時,假設(shè)遺傳因子被選中的概率為,被選中的概率為,.求雜交所得子代的三種遺傳性狀,(或),所占的比例.(3)繼續(xù)對(2)中的植物進(jìn)行雜交實驗,每次雜交前都需要剔除性狀為的個體假設(shè)得到的第代總體中3種遺傳性狀,(或),所占比例分別為.設(shè)第代遺傳因子和的頻率分別為和,已知有以下公式.證明是等差數(shù)列.(4)求的通項公式,如果這種剔除某種遺傳性狀的隨機(jī)雜交實驗長期進(jìn)行下去,會有什么現(xiàn)象發(fā)生?19.(12分)設(shè)函數(shù),.(1)求函數(shù)的極值;(2)對任意,都有,求實數(shù)a的取值范圍.20.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?非體育迷體育迷合計男女1055合計(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63521.(12分)已知數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)若,,且數(shù)列前項和為,求的取值范圍.22.(10分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若,證明.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺和第二展望臺的距離,進(jìn)而由比例即可求得該塔的實際高度.【詳解】設(shè)第一展望臺到塔底的高度為米,塔的實際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點睛】本題考查了對中國文化的理解與簡單應(yīng)用,屬于基礎(chǔ)題.2、D【解析】

計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學(xué)生的計算能力和應(yīng)用能力.3、D【解析】

根據(jù)雷達(dá)圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎(chǔ)題.4、D【解析】

以BC的中點為坐標(biāo)原點,建立直角坐標(biāo)系,可得,設(shè),運用向量的坐標(biāo)表示,求得點A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標(biāo)原點,建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時,的最小值為.故選D.【點睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.5、C【解析】

根據(jù)復(fù)數(shù)代數(shù)形式的運算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復(fù)數(shù)代數(shù)形式的運算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.6、D【解析】

設(shè),整理得到方程組,解方程組即可解決問題.【詳解】設(shè),因為,所以,所以,解得:,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,此點位于第四象限.故選D【點睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點知識,考查了方程思想,屬于基礎(chǔ)題.7、D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關(guān)系,考查了學(xué)生概念理解,數(shù)學(xué)運算能力,屬于基礎(chǔ)題.8、C【解析】

根據(jù)三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎(chǔ)題.9、A【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出右頂點、右焦點的坐標(biāo),再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標(biāo),最后利用三角形的面積公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知中:,因此右頂點的坐標(biāo)為,右焦點的坐標(biāo)為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對稱性不妨設(shè)點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標(biāo)是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點睛】本題考查了雙曲線的漸近線方程的應(yīng)用,考查了兩直線平行的性質(zhì),考查了數(shù)學(xué)運算能力.10、B【解析】

根據(jù)函數(shù)單調(diào)性逐項判斷即可【詳解】對A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數(shù),且a>b,所以ca>cb,正確對C,因為y=xc為增函數(shù),故,錯誤;對D,因為在為減函數(shù),故,錯誤故選B.【點睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.11、C【解析】

由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點共線,又得到一個關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關(guān)知識,結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.12、A【解析】

首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復(fù)數(shù)求模問題,考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

連續(xù)擲兩次骰子共有種結(jié)果,列出滿足條件的結(jié)果有11種,利用古典概型即得解【詳解】由題意知,連續(xù)擲兩次骰子共有種結(jié)果,而滿足條件的結(jié)果為:共有11種結(jié)果,根據(jù)古典概型概率公式,可得所求概率.故答案為:【點睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.14、【解析】

直接計算得到答案,根據(jù)題意得到,,解得答案.【詳解】,故,當(dāng)時,,故,解得.故答案為:;.【點睛】本題考查了三角函數(shù)的周期和單調(diào)性,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.15、【解析】

當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)為常數(shù),故需滿足,且,解得答案.【詳解】,當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)為常數(shù),需滿足,且,解得.故答案為:.【點睛】本題考查了根據(jù)函數(shù)單調(diào)性解不等式,意在考查學(xué)生對于函數(shù)性質(zhì)的靈活運用.16、【解析】

根據(jù)圖象利用,先求出的值,結(jié)合求出,然后利用周期公式進(jìn)行求解即可.【詳解】解:由,得,,,則,,,即,則函數(shù)的最小正周期,故答案為:8【點睛】本題主要考查三角函數(shù)周期的求解,結(jié)合圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)32【解析】

利用絕對值不等式的解法求出不等式的解集,得到關(guān)于的方程,求出的值即可;由知可得,,利用三個正數(shù)的基本不等式,構(gòu)造和是定值即可求出的最大值.【詳解】(1)∵,,所以不等式的解集為,即為不等式的解集為,∴的解集為,即不等式的解集為,化簡可得,不等式的解集為,所以,即.(2)∵,∴.又∵,,,∴,當(dāng)且僅當(dāng),等號成立,即,,時,等號成立,∴的最大值為32.【點睛】本題主要考查含有兩個絕對值不等式的解法和三個正數(shù)的基本不等式的靈活運用;其中利用構(gòu)造出和為定值即為定值是求解本題的關(guān)鍵;基本不等式取最值的條件:一正二定三相等是本題的易錯點;屬于中檔題.18、(1),(或),的概率分別是,,.(2)(3)答案見解析(4)答案見解析【解析】

(1)利用相互獨立事件的概率乘法公式即可求解.(2)利用相互獨立事件的概率乘法公式即可求解.(3)由(2)知,求出、,利用等差數(shù)列的定義即可證出.(4)利用等差數(shù)列的通項公式可得,從而可得,再由,利用式子的特征可得越來越小,進(jìn)而得出結(jié)論.【詳解】(1)即與是父親和母親的性狀,每個因子被選擇的概率都是,故出現(xiàn)的概率是,或出現(xiàn)的概率是,出現(xiàn)的概率是所以:,(或),的概率分別是,,(2)(3)由(2)知于是∴是等差數(shù)列,公差為1(4)其中,(由(2)的結(jié)論得)所以于是,很明顯,越大,越小,所以這種實驗長期進(jìn)行下去,越來越小,而是子代中所占的比例,也即性狀會漸漸消失.【點睛】本題主要考查了相互獨立事件的概率乘法公式、等差數(shù)列的定義、等差數(shù)列的通項公式,考查了學(xué)生的分析能力,屬于中檔題,19、(1)當(dāng)時,無極值;當(dāng)時,極小值為;(2).【解析】

(1)求導(dǎo),對參數(shù)進(jìn)行分類討論,即可容易求得函數(shù)的極值;(2)構(gòu)造函數(shù),兩次求導(dǎo),根據(jù)函數(shù)單調(diào)性,由恒成立問題求參數(shù)范圍即可.【詳解】(1)依題,當(dāng)時,,函數(shù)在上單調(diào)遞增,此時函數(shù)無極值;當(dāng)時,令,得,令,得所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.此時函數(shù)有極小值,且極小值為.綜上:當(dāng)時,函數(shù)無極值;當(dāng)時,函數(shù)有極小值,極小值為.(2)令易得且,令所以,因為,,從而,所以,在上單調(diào)遞增.又若,則所以在上單調(diào)遞增,從而,所以時滿足題意.若,所以,,在中,令,由(1)的單調(diào)性可知,有最小值,從而.所以所以,由零點存在性定理:,使且在上單調(diào)遞減,在上單調(diào)遞增.所以當(dāng)時,.故當(dāng),不成立.綜上所述:的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)研究含參函數(shù)的極值,涉及由恒成立問題求參數(shù)范圍的問題,屬壓軸題.20、(1)無關(guān);(2),.【解析】

(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論