![向量數(shù)量積的坐標(biāo)運(yùn)算第2課時(shí)高一下學(xué)期數(shù)學(xué)人教B版(2019)必修第三冊(cè)_第1頁(yè)](http://file4.renrendoc.com/view14/M02/28/2C/wKhkGWYd0paAeZySAACYFQiG00c303.jpg)
![向量數(shù)量積的坐標(biāo)運(yùn)算第2課時(shí)高一下學(xué)期數(shù)學(xué)人教B版(2019)必修第三冊(cè)_第2頁(yè)](http://file4.renrendoc.com/view14/M02/28/2C/wKhkGWYd0paAeZySAACYFQiG00c3032.jpg)
![向量數(shù)量積的坐標(biāo)運(yùn)算第2課時(shí)高一下學(xué)期數(shù)學(xué)人教B版(2019)必修第三冊(cè)_第3頁(yè)](http://file4.renrendoc.com/view14/M02/28/2C/wKhkGWYd0paAeZySAACYFQiG00c3033.jpg)
![向量數(shù)量積的坐標(biāo)運(yùn)算第2課時(shí)高一下學(xué)期數(shù)學(xué)人教B版(2019)必修第三冊(cè)_第4頁(yè)](http://file4.renrendoc.com/view14/M02/28/2C/wKhkGWYd0paAeZySAACYFQiG00c3034.jpg)
![向量數(shù)量積的坐標(biāo)運(yùn)算第2課時(shí)高一下學(xué)期數(shù)學(xué)人教B版(2019)必修第三冊(cè)_第5頁(yè)](http://file4.renrendoc.com/view14/M02/28/2C/wKhkGWYd0paAeZySAACYFQiG00c3035.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
向量數(shù)量積的坐標(biāo)運(yùn)算第2課時(shí)新知探究問(wèn)題1
向量數(shù)量積的坐標(biāo)運(yùn)算公式是什么?如何利用坐標(biāo)運(yùn)算公式求向量的模、向量夾角??jī)牲c(diǎn)間的距離公式呢?如果A(x1,y2),B(x2,y2),則設(shè)
=(x1,y1),
=(x2,y2),則新知探究問(wèn)題2如何利用向量數(shù)量積的坐標(biāo)運(yùn)算公式證明垂直呢?設(shè)
=(x1,y1),
=(x2,y2),則初步應(yīng)用例1
如圖所示,已知點(diǎn)A(2,1),將向量繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到,求點(diǎn)B的坐標(biāo).又因?yàn)橛蓤D可知x<0,所以B(-1,2).yxBAO解答:由已知可得:又因?yàn)?/p>
=(2,1),設(shè)B(x,y),則
=(x,y),從而有解得或初步應(yīng)用例2
在正方形ABCD中,E,F(xiàn)分別為AB,BC的中點(diǎn),求證:AF
DE.證明:以A為直角坐標(biāo)原點(diǎn),以AB所在直線為x軸建立直角坐標(biāo)系.不妨設(shè)正方形ABCD邊長(zhǎng)為2,則A(0,0),E(1,0),F(xiàn)(2,1),D(0,2),所以AF
DE.所以=(2,1),
=(1,-2),
=2×1+1×(-2)=0,ABCDEF初步應(yīng)用例3
在△ABC中,=(2,3),=(1,k),且△ABC的一個(gè)內(nèi)角為直角,求k值.解答:A
=90
時(shí),∴2×1+3×k
=0∴當(dāng)B
=90
時(shí),=(1
2,k
3)=(
1,k
3)∴2×(
1)+3×(k
3)=0∴當(dāng)C
=90
時(shí),∴
1+k(k
3)=0∴綜上,或或初步應(yīng)用例4
已知a=(1,2),b=(1,λ),分別確定實(shí)數(shù)λ的取值范圍,使得:解答:a·b=(1,2)·(1,λ)=1+2λ.(1)因?yàn)閍與b的夾角為直角,所以cosθ=0,所以a·b=0,(1)a與b的夾角為直角;(2)a與b的夾角為鈍角;(3)a與b的夾角為銳角.即1+2λ=0,所以λ=初步應(yīng)用例4
已知a=(1,2),b=(1,λ),分別確定實(shí)數(shù)λ的取值范圍,使得:(2)因?yàn)閍與b的夾角為鈍角,所以a·b<0,且a與b不反向.(1)a與b的夾角為直角;(2)a與b的夾角為鈍角;(3)a與b的夾角為銳角.所以cosθ<0,且cosθ≠-1,由a與b共線得λ=2,故a與b不可能反向.由a·b<0,得1+2λ<0,故λ<所以λ的取值范圍為(-∞,
).初步應(yīng)用例4
已知a=(1,2),b=(1,λ),分別確定實(shí)數(shù)λ的取值范圍,使得:(3)因?yàn)閍與b的夾角為銳角,所以a·b>0且a,b不同向.(1)a與b的夾角為直角;(2)a與b的夾角為鈍角;(3)a與b的夾角為銳角.所以cosθ>0,且cosθ≠1,由a與b同向得λ=2.由a·b>0,得λ>所以λ的取值范圍為(
,2)∪(2,+∞).初步應(yīng)用例5
如圖所示,已知正方形ABCD中,P為對(duì)角線AC不在端點(diǎn)上的任意一點(diǎn),PE⊥AB,PF⊥BC,連接DP,EF,求證:DP⊥EF.證明:建立如圖所示的平面直角坐標(biāo)系,由已知,可設(shè)P(a,a),其中0<a<1,則E(a,0),F(xiàn)(1,a),ABCDEFPyxO則A(0,0),B(1,0),D(0,1),從而
=(1,0),
=(0,1).所以,因此DP⊥EF.又因?yàn)?/p>
=a(1-a)+(a-1)a=0,因此=(a,a-1),
=(1-a,a)初步應(yīng)用建立合理的平面直角坐標(biāo)系之后,可以方便地借助向量的坐標(biāo)來(lái)解決有關(guān)幾何問(wèn)題.利用向量處理幾何問(wèn)題的一般步驟為:建立平面直角坐標(biāo)系;設(shè)點(diǎn)的坐標(biāo);求出有關(guān)向量的坐標(biāo);利用向量的運(yùn)算計(jì)算結(jié)果;得到結(jié)論.練習(xí)1B在△ABC中,A(4,6),B(-4,10),C(2,4),則△ABC是()A.銳角三角形B.鈍角三角形C.直角三角形D.等邊三角形解析:因?yàn)?/p>
=(4,6)-(2,4)=(2,2)=(-4,10)-(2,4)=(-6,6)所以
=(2,2)·(-6,6)=2×(-6)+2×6=0.因此,即∠ACB=90°,故△ABC是直角三角形.練習(xí)解答:建立如圖所示的平面直角坐標(biāo)系,設(shè)DC=h,則A(2,0),B(1,h).2在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的動(dòng)點(diǎn),求的最小值.ABCPyxD設(shè)P(0,y)(0≤y≤h),則=(2,-y),=(1,h-y),∴當(dāng)且僅當(dāng)3h=4y,即DP=DC時(shí),等號(hào)成立.故
的最小值為5.練習(xí)練習(xí)3:教科書(shū)練習(xí)A:5.歸納小結(jié)向量數(shù)量積的坐標(biāo)運(yùn)算向量坐標(biāo)表示兩個(gè)向量垂直的充要條件向量的坐標(biāo)使向量“代數(shù)身份”得以充分顯現(xiàn),更是利用向量的“坐標(biāo)法”解決幾何問(wèn)題的基礎(chǔ).在實(shí)際解題的過(guò)程中,我們可以結(jié)合題目的圖形特征(比如:正方形、長(zhǎng)方形、直角三角形),選定正交基底,建立平面直角坐標(biāo)系,利用向量的“坐標(biāo)”體現(xiàn)題目的幾何特征(垂直、共線、角度)代數(shù)化的特點(diǎn).作業(yè)布置作業(yè):教科書(shū)練習(xí)B:5,6.1目標(biāo)檢測(cè)如圖,以原點(diǎn)和A(5,2)為頂點(diǎn)作等腰直角△OAB,使
B
=90
,求點(diǎn)B和向量的坐標(biāo).解答:設(shè)B點(diǎn)坐標(biāo)(x,y),則=(x,y),=(x
5,y
2)∵∴x(x
5)+y(y
2)=0即:x2
+y2
5x
2y
=0又∵∴x2
+y2
=(x
5)2
+(y
2)2即:10x
+4y
=29AByxO由∴B點(diǎn)坐標(biāo)或;2目標(biāo)檢測(cè)已知=(2,0),=(3,1).(1)當(dāng)k為何值時(shí),與垂直;(2)若且A,B,C三點(diǎn)共線,求m的值.解答:(1)因?yàn)椋剑?,0),=(3,1),所以=(2k-3,-1)與=(8,2),由與垂直,得8(2k-3)+2(-1)=0,所以2目標(biāo)檢測(cè)已知=(2,0),=(3,1).(1)當(dāng)k為何值時(shí),與垂直;(2)若
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年結(jié)構(gòu)化布線系統(tǒng)的檢測(cè)設(shè)備合作協(xié)議書(shū)
- 冀教版數(shù)學(xué)九年級(jí)下冊(cè)《30.3 由不共線三點(diǎn)的坐標(biāo)確定二次函數(shù)》聽(tīng)評(píng)課記錄1
- 生產(chǎn)技術(shù)合同范本(2篇)
- 甘肅省就業(yè)協(xié)議書(shū)(2篇)
- 北師大版歷史七年級(jí)下冊(cè)第19課《明清經(jīng)濟(jì)繁盛與清前期盛世輝煌》聽(tīng)課評(píng)課記錄
- 人教版數(shù)學(xué)八年級(jí)下冊(cè)聽(tīng)評(píng)課記錄:第16章 二次根式的乘除法(二)
- 新北師大版小學(xué)數(shù)學(xué)一年級(jí)上冊(cè)《分類》聽(tīng)評(píng)課記錄
- 中圖版歷史七年級(jí)下冊(cè)第14課《明朝的對(duì)外交往與抗倭斗爭(zhēng)》聽(tīng)課評(píng)課記錄
- 蘇科版數(shù)學(xué)九年級(jí)上冊(cè)《切線》聽(tīng)評(píng)課記錄
- 統(tǒng)編版初中語(yǔ)文九年級(jí)下冊(cè)第十六課《驅(qū)遣我們的想象》聽(tīng)評(píng)課記錄
- 知名企業(yè)建筑工程抹灰工程標(biāo)準(zhǔn)規(guī)范圖示手冊(cè)
- 重大事故隱患排查治理
- 2025保安部年度工作計(jì)劃
- 寵物貓護(hù)理教學(xué)
- 2024年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)
- 圖書(shū)借閱登記表
- 中華人民共和國(guó)能源法
- 人居環(huán)境綜合治理項(xiàng)目項(xiàng)目背景及必要性分析
- 招標(biāo)采購(gòu)基礎(chǔ)知識(shí)培訓(xùn)
- 2024年法律職業(yè)資格考試(試卷二)客觀題試題及解答參考
評(píng)論
0/150
提交評(píng)論