版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆云南省易門縣重點達標名校中考數(shù)學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某校體育節(jié)有13名同學參加女子百米賽跑,它們預賽的成績各不相同,取前6名參加決賽.小穎已經知道了自己的成績,她想知道自己能否進入決賽,還需要知道這13名同學成績的()A.方差B.極差C.中位數(shù)D.平均數(shù)2.下列圖案中,是軸對稱圖形的是()A. B. C. D.3.下列實數(shù)中,結果最大的是()A.|﹣3| B.﹣(﹣π) C. D.34.下列各式中,互為相反數(shù)的是()A.和 B.和 C.和 D.和5.如圖,已知直線a∥b∥c,直線m,n與a,b,c分別交于點A,C,E,B,D,F(xiàn),若AC=4,CE=6,BD=3,則DF的值是()A.4 B.4.5 C.5 D.5.56.如圖,用一個半徑為6cm的定滑輪帶動重物上升,假設繩索(粗細不計)與滑輪之間沒有滑動,繩索端點G向下移動了3πcm,則滑輪上的點F旋轉了()A.60° B.90° C.120° D.45°7.一個不透明的布袋里裝有7個只有顏色不同的球,其中3個紅球,4個白球,從布袋中隨機摸出一個球,摸出的球是紅球的概率是()A. B. C. D.8.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關于x的方程ax2+bx+c﹣4=0的根的情況是A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根9.下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm10.如圖,已知∠AOB=70°,OC平分∠AOB,DC∥OB,則∠C為()A.20° B.35° C.45° D.70°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.12.如圖,已知圓錐的母線SA的長為4,底面半徑OA的長為2,則圓錐的側面積等于.13.已知線段厘米,厘米,線段c是線段a和線段b的比例中項,線段c的長度等于________厘米.14.如圖,已知平行四邊形ABCD,E是邊BC的中點,聯(lián)結DE并延長,與AB的延長線交于點F.設=,=,那么向量用向量、表示為_____.15.如圖,反比例函數(shù)y=(x<0)的圖象經過點A(﹣2,2),過點A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點P(0,t),過點P作直線OA的垂線l,以直線l為對稱軸,點B經軸對稱變換得到的點B'在此反比例函數(shù)的圖象上,則t的值是()A.1+ B.4+ C.4 D.-1+16.某菜農搭建了一個橫截面為拋物線的大棚,尺寸如圖,若菜農身高為1.8m,他在不彎腰的情況下,在棚內的橫向活動范圍是__m.17.如圖,數(shù)軸上點A表示的數(shù)為a,化簡:a_____.三、解答題(共7小題,滿分69分)18.(10分)關于的一元二次方程有實數(shù)根.求的取值范圍;如果是符合條件的最大整數(shù),且一元二次方程與方程有一個相同的根,求此時的值.19.(5分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點C作⊙O的切線交BA的延長線于點E,BD⊥CE于點D,連接DO交BC于點M.(1)求證:BC平分∠DBA;(2)若,求的值.20.(8分)解不等式組.21.(10分)如圖,在等邊三角形ABC中,點D,E分別在BC,AB上,且∠ADE=60°.求證:△ADC~△DEB.22.(10分)已知P是的直徑BA延長線上的一個動點,∠P的另一邊交于點C、D,兩點位于AB的上方,=6,OP=m,,如圖所示.另一個半徑為6的經過點C、D,圓心距.(1)當m=6時,求線段CD的長;(2)設圓心O1在直線上方,試用n的代數(shù)式表示m;(3)△POO1在點P的運動過程中,是否能成為以OO1為腰的等腰三角形,如果能,試求出此時n的值;如果不能,請說明理由.23.(12分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.24.(14分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點C作AD的垂線,交AD的延長線于點H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數(shù);②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數(shù)量關系,并證明.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】13個不同的分數(shù)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有7個數(shù),故只要知道自己的分數(shù)和中位數(shù)就可以知道是否獲獎了.故選C.2、B【解析】
根據(jù)軸對稱圖形的定義,逐一進行判斷.【詳解】A、C是中心對稱圖形,但不是軸對稱圖形;B是軸對稱圖形;D不是對稱圖形.故選B.【點睛】本題考查的是軸對稱圖形的定義.3、B【解析】
正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小,據(jù)此判斷即可.【詳解】根據(jù)實數(shù)比較大小的方法,可得<|-3|=3<-(-π),所以最大的數(shù)是:-(-π).故選B.【點睛】此題主要考查了實數(shù)大小比較的方法,及判斷無理數(shù)的范圍,要熟練掌握,解答此題的關鍵是要明確:正實數(shù)>0>負實數(shù),兩個負實數(shù)絕對值大的反而?。?、A【解析】
根據(jù)乘方的法則進行計算,然后根據(jù)只有符號不同的兩個數(shù)互為相反數(shù),可得答案.【詳解】解:A.=9,=-9,故和互為相反數(shù),故正確;B.=9,=9,故和不是互為相反數(shù),故錯誤;C.=-8,=-8,故和不是互為相反數(shù),故錯誤;D.=8,=8故和不是互為相反數(shù),故錯誤.故選A.【點睛】本題考查了有理數(shù)的乘方和相反數(shù)的定義,關鍵是掌握有理數(shù)乘方的運算法則.5、B【解析】試題分析:根據(jù)平行線分線段成比例可得,然后根據(jù)AC=1,CE=6,BD=3,可代入求解DF=1.2.故選B考點:平行線分線段成比例6、B【解析】
由弧長的計算公式可得答案.【詳解】解:由圓弧長計算公式,將l=3π代入,可得n=90,故選B.【點睛】本題主要考查圓弧長計算公式,牢記并運用公式是解題的關鍵.7、B【解析】袋中一共7個球,摸到的球有7種可能,而且機會均等,其中有3個紅球,因此摸到紅球的概率為,故選B.8、A【解析】
根據(jù)拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【詳解】∵函數(shù)的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.【點睛】本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關系是解題的關鍵.9、C【解析】
根據(jù)三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【點睛】本題考查了三角形的三邊關系,關鍵是靈活運用三角形三邊關系.10、B【解析】解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故選B.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
根據(jù)相似三角形的對應邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點睛】本題考查的是相似三角形的性質,掌握相似三角形的對應邊的比相等是解題的關鍵.12、8π【解析】
圓錐的側面積就等于母線長乘底面周長的一半.依此公式計算即可.【詳解】側面積=4×4π÷2=8π.故答案為8π.【點睛】本題主要考查了圓錐的計算,正確理解圓錐的側面積的計算可以轉化為扇形的面積的計算,理解圓錐與展開圖之間的關系.13、1【解析】
根據(jù)比例中項的定義,列出比例式即可得出中項,注意線段不能為負.【詳解】∵線段c是線段a和線段b的比例中項,∴,解得(線段是正數(shù),負值舍去),∴,故答案為:1.【點睛】本題考查比例線段、比例中項等知識,比例中項的平方等于兩條線段的乘積,熟練掌握基本概念是解題關鍵.14、+2【解析】
根據(jù)平行四邊形的判定與性質得到四邊形DBFC是平行四邊形,則DC=BF,故AF=2AB=2DC,結合三角形法則進行解答.【詳解】如圖,連接BD,F(xiàn)C,∵四邊形ABCD是平行四邊形,∴DC∥AB,DC=AB.∴△DCE∽△FBE.又E是邊BC的中點,∴,∴EC=BE,即點E是DF的中點,∴四邊形DBFC是平行四邊形,∴DC=BF,故AF=2AB=2DC,∴=+=+2=+2.故答案是:+2.【點睛】此題考查了平面向量的知識、相似三角形的判定與性質以及平行四邊形的性質.注意掌握三角形法則的應用是關鍵.15、A【解析】
根據(jù)反比例函數(shù)圖象上點的坐標特征由A點坐標為(-2,2)得到k=-4,即反比例函數(shù)解析式為y=-,且OB=AB=2,則可判斷△OAB為等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后軸對稱的性質得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y軸,則點B的坐標可表示為(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到滿足條件的t的值.【詳解】如圖,∵點A坐標為(-2,2),∴k=-2×2=-4,∴反比例函數(shù)解析式為y=-,∵OB=AB=2,∴△OAB為等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵點B和點B′關于直線l對稱,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y軸,∴點B′的坐標為(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合題意,舍去),∴t的值為.故選A.【點睛】本題是反比例函數(shù)的綜合題,解決本題要掌握反比例函數(shù)圖象上點的坐標特征、等腰直角三角形的性質和軸對稱的性質及會用求根公式法解一元二次方程.16、1【解析】
設拋物線的解析式為:y=ax2+b,由圖得知點(0,2.4),(1,0)在拋物線上,列方程組得到拋物線的解析式為:y=﹣x2+2.4,根據(jù)題意求出y=1.8時x的值,進而求出答案;【詳解】設拋物線的解析式為:y=ax2+b,由圖得知:點(0,2.4),(1,0)在拋物線上,∴,解得:,∴拋物線的解析式為:y=﹣x2+2.4,∵菜農的身高為1.8m,即y=1.8,則1.8=﹣x2+2.4,解得:x=(負值舍去)故他在不彎腰的情況下,橫向活動范圍是:1米,故答案為1.17、1.【解析】
直接利用二次根式的性質以及結合數(shù)軸得出a的取值范圍進而化簡即可.【詳解】由數(shù)軸可得:0<a<1,則a+=a+=a+(1﹣a)=1.故答案為1.【點睛】本題主要考查了二次根式的性質與化簡,正確得出a的取值范圍是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1);(2)的值為.【解析】
(1)利用判別式的意義得到,然后解不等式即可;(2)利用(1)中的結論得到的最大整數(shù)為2,解方程解得,把和分別代入一元二次方程求出對應的,同時滿足.【詳解】解:(1)根據(jù)題意得,解得;(2)的最大整數(shù)為2,方程變形為,解得,∵一元二次方程與方程有一個相同的根,∴當時,,解得;當時,,解得,而,∴的值為.【點睛】本題考查了根的判別式:一元二次方程的根與有如下關系:當時,方程有兩個不相等的實數(shù)根;當時,方程有兩個相等的實數(shù)根;當時,方程無實數(shù)根.19、(1)證明見解析;(2)【解析】分析:(1)如下圖,連接OC,由已知易得OC⊥DE,結合BD⊥DE可得OC∥BD,從而可得∠1=∠2,結合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,從而可得BC平分∠DBA;(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根據(jù)相似三角形的性質可得得,由,設EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.詳解:(1)證明:連結OC,∵DE與⊙O相切于點C,∴OC⊥DE.∵BD⊥DE,∴OC∥BD..∴∠1=∠2,∵OB=OC,∴∠1=∠3,∴∠2=∠3,即BC平分∠DBA..(2)∵OC∥BD,∴△EBD∽△EOC,△DBM∽△OCM,.∴,∴,∵,設EA=2k,AO=3k,∴OC=OA=OB=3k.∴.點睛:(1)作出如圖所示的輔助線,由“切線的性質”得到OC⊥DE結合BD⊥DE得到OC∥BD是解答第1小題的關鍵;(2)解答第2小題的關鍵是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM這樣利用相似三角形的性質結合已知條件即可求得所求值了.20、x<﹣1.【解析】分析:按照解一元一次不等式組的一般步驟解答即可.詳解:,由①得x≤1,由②得x<﹣1,∴原不等式組的解集是x<﹣1.點睛:“熟練掌握一元一次不等式組的解法”是正確解答本題的關鍵.21、見解析【解析】
根據(jù)等邊三角形性質得∠B=∠C,根據(jù)三角形外角性質得∠CAD=∠BDE,易證.【詳解】證明:ABC是等邊三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C=∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴【點睛】考核知識點:相似三角形的判定.根據(jù)等邊三角形性質和三角形外角確定對應角相等是關鍵.22、(1)CD=;(2)m=;(3)n的值為或【解析】分析:(1)過點作⊥,垂足為點,連接.解Rt△,得到的長.由勾股定理得的長,再由垂徑定理即可得到結論;(2)解Rt△,得到和Rt△中,由勾股定理即可得到結論;(3)△成為等腰三角形可分以下幾種情況討論:①當圓心、在弦異側時,分和.②當圓心、在弦同側時,同理可得結論.詳解:(1)過點作⊥,垂足為點,連接.在Rt△,∴.∵=6,∴.由勾股定理得:.∵⊥,∴.(2)在Rt△,∴.在Rt△中,.在Rt△中,.可得:,解得.(3)△成為等腰三角形可分以下幾種情況:①當圓心、在弦異側時i),即,由,解得.即圓心距等于、的半徑的和,就有、外切不合題意舍去.ii),由,解得:,即,解得.②當圓心、在弦同側時,同理可得:.∵是鈍角,∴只能是,即,解得.綜上所述:n的值為或.點睛:本題是圓的綜合題.考查了圓的有關性質和兩圓的位置關系以及解直徑三角形.解答(3)的關鍵是要分類討論.23、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質及勾股定理就可以求出結論;(3)由二次函數(shù)的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設設E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關系式,由二次函數(shù)的性質就可以求出結論.試題解析:(1)∵拋物線y=﹣x1+mx+n經過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當y=0時,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過點C作CM⊥EF于M,設E(a,﹣a+1),F(xiàn)(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時,S四邊形CDBF的面積最大=,∴E(1,1).考點:1、勾股定理;1、等腰三角形的性質;3、四邊形的面積;2、二次函數(shù)的最值24、(1)①45°,②;(2)線段AH
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省宜賓縣一中2025屆高考數(shù)學四模試卷含解析
- 2025屆上海市同濟中學高三(最后沖刺)英語試卷含解析
- 2024版特許經營合同涉及經營范圍、地域限制與品牌使用3篇
- 2024年度文化旅游小區(qū)門面租賃及旅游服務合同
- 2024年度幼兒園食堂就餐管理與營養(yǎng)膳食合同2篇
- 2024年度夏塘里商業(yè)街房屋租賃與裝修改造服務合同3篇
- GB/T 44943-2024鞋類化學試驗方法鄰苯基苯酚含量的測定高效液相色譜-串聯(lián)質譜法
- 2024年動產質押擔保物流配送合同3篇
- 2024年度高端別墅預售買賣合同3篇
- 2024小區(qū)消防控制室升級改造與運營服務合同3篇
- 期末(試題)-2024-2025學年人教PEP版英語六年級上冊
- 三創(chuàng)賽獲獎-非遺文化創(chuàng)新創(chuàng)業(yè)計劃書
- 車輛保養(yǎng)維修登記表
- 國家開放大學《理工英語3》章節(jié)測試參考答案
- 濕法脫硫用水水質要求
- 信息化系統(tǒng)機房標識的相關規(guī)范
- 城管局個人工作總結
- MT_T 1186-2020 露天煤礦運輸安全技術規(guī)范_(高清版)
- 冷庫項目專項扶持資金申請報告(模板范本)
- 鉑銠合金漏板.
- 國有建設企業(yè)《大宗材料及設備采購招標管理辦法》
評論
0/150
提交評論