版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
關于求一次函數(shù)解析式
一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)性質:
1.當k>0時,y隨x的增大而;當k<0時,y隨x的增大而。
增大減?。?,b)(
-b/k,0)2、一次函數(shù)y=kx+b與x軸的交點為與y軸的交點為溫故知新第2頁,共71頁,2024年2月25日,星期天求下圖中直線的函數(shù)解析式?123o4321yx·(1,3)解:設該直線的解析式為:y=kx(k≠0)將點(1,3)代入解析式得k=3,所以該函數(shù)的解析式為y=3x.●●第3頁,共71頁,2024年2月25日,星期天例1已知:一次函數(shù)的圖象經(jīng)過點(2,5)和點(1,3),求出一次函數(shù)的解析式.123o4321·(1,3)●●5(2,5)xy第4頁,共71頁,2024年2月25日,星期天把k=1,b=2代入y=kx+b中,得一次函數(shù)解析式為__________.把點_______,_______代入所設解析式得設一次函數(shù)的解析式為_______________
例1已知:一次函數(shù)的圖象經(jīng)過點(2,5)和點(1,3),求出一次函數(shù)的解析式.解:y=kx+b(k≠0)(2,5)(1,3)12y=2x+1解得,k=_____b=_____2513k+b=k+b=第5頁,共71頁,2024年2月25日,星期天1.設一次函數(shù)的一般形式y(tǒng)=kx+b(k≠0);歸納小結2.根據(jù)已知條件列出關于k,b的二元一次方程組3.解這個方程組,解出k,b;4.將已經(jīng)求出的k,b的值代入所設解析式.
寫出這個解析式解題的步驟:
第6頁,共71頁,2024年2月25日,星期天待定系數(shù)法:
像剛才這樣先設待求的函數(shù)關系式(其中含有未知的系數(shù))再根據(jù)條件列出方程或方程組,解出未知系數(shù),從而得到所求結果的方法,叫做待定系數(shù)法.第7頁,共71頁,2024年2月25日,星期天1.已知一次函數(shù)的圖象如圖所示,求該函數(shù)的解析式。012345xy54321練習1第8頁,共71頁,2024年2月25日,星期天解:設這個一次函數(shù)的解析式為y=kx+b?!郻=3
3k+b=0
解方程組得
k=1
b=3
∴這個一次函數(shù)的解析式為y=
x+3。(k≠0)從圖中可以看出
圖象過點(0,3)與(3,0)。012345xy54321第9頁,共71頁,2024年2月25日,星期天函數(shù)解析式y(tǒng)=kx+b(k≠0)選取解出滿足條件的兩點(x1,y1)與(x2,y2)一次函數(shù)的圖象直線畫出選取從數(shù)到形從形到數(shù)數(shù)學的思想方法:數(shù)形結合第10頁,共71頁,2024年2月25日,星期天2.如圖,一次函數(shù)的圖象過點A且與正比例函數(shù)y=-x的圖象交于點B。那么該一次函數(shù)的表達式為
-10xy=-x2AByy=x+2第11頁,共71頁,2024年2月25日,星期天若直線l與直線y=x-1關于x軸對稱,則直線l的解析式為_____________。學以致用12y=-x+112012xy1-1A(2,0)B(0,-1)B1(0,1)y=x-112y=-x+112第12頁,共71頁,2024年2月25日,星期天
總結:若l直線與直線y=kx+b關于(1)x軸對稱,則直線l的解析式為y=
-kx-b,
即將y換成–y
。(2)y軸對稱,則直線l的解析式為y=-kx+b,
即將x
換成-x。
(3)原點對稱,則直線l的解析式為y=kx-b,
即將y換成-y,x換成-x。第13頁,共71頁,2024年2月25日,星期天若直線l與直線y=x-1關于y軸對稱,則直線l的解析式為_____________。想一想若直線l與直線y=x-1關于原點對稱,則直線l的解析式為_____________。1212y=-x-112y=x+112第14頁,共71頁,2024年2月25日,星期天例2已知直線y=kx+b與直線y=2x平行且過點(-1,4),則k=___,b=___。3.已知一次函數(shù)y=kx+b的圖象與y=-3x+4的圖象平行且與y軸相交于點(0,3)。則這個函數(shù)的解析式為__________________。y=-3x+326小試牛刀第15頁,共71頁,2024年2月25日,星期天4.直線y=kx+b經(jīng)過點A(-3,0)且與y軸交于點B,如果△AOB的(0為坐標原點)面積為4.5,則這條直線的解析式為()。
A.y=x+3B.y=-x-3C.y=x+3或y=-x-3D.y=x+3或y=x-3大展身手·(-3,0)xyoc第16頁,共71頁,2024年2月25日,星期天1、用待定系數(shù)法求一次函數(shù)的解析式。2、數(shù)與形的關系----數(shù)形結合的思想。課堂小結3、對有些題目要分情況進行討論——分類討論的思想。第17頁,共71頁,2024年2月25日,星期天
已知一次函數(shù)y=kx+b中自變量x的取值范圍是-2≤x≤6,相應的函數(shù)取值范圍是-11≤y≤9,求此函數(shù)解析式。探究第18頁,共71頁,2024年2月25日,星期天(一)模仿:
1、已知一次函數(shù)y=kx+b,當x=2時y的值為4,當x=-2時,y的值為-2,求k、b的值.(P120/6)
2、已知直線y=kx+b經(jīng)過點(9,0)和點(24,20),求k、b的值.。(P118/2)
3、已知一次函數(shù)的圖象經(jīng)過點(-4,9)與(6,3),求這個函數(shù)的表達式。(P120/7)
4、已知直線y=kx+b經(jīng)過點(3,6)和點,求這條直線的函數(shù)解析式。(P137/4)三、趁熱打鐵第19頁,共71頁,2024年2月25日,星期天三、趁熱打鐵(二)變式:
1、已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,1)和點(1,-5),求當x=5時,函數(shù)y的值.
2、根據(jù)下列條件確定函數(shù)y=kx+b的解析式
y與x成正比例,當x=5時,y=6(P137/4)
3、一個一次函數(shù)的圖象是經(jīng)過原點的直線,并且這條直線過第四象限及點(2,-3a)與點(a,-6),求這個函數(shù)的解析式。(P120/8)第20頁,共71頁,2024年2月25日,星期天三、趁熱打鐵(三)靈活:(P120/9,P138/10)
第21頁,共71頁,2024年2月25日,星期天(三)求函數(shù)解析式的綜合應用
1.(2011浙江湖州)已知:一次函數(shù)y=kx+b的圖象經(jīng)過M(0,2),(1,3)兩點.
(l)求k、b的值;
(2)若一次函數(shù)的圖象與x軸的交點為A(a,0),求a的值.
2.已知一次函數(shù)的圖像經(jīng)過點A(2,2)和點B(-2,-4).
(1)求AB的函數(shù)解析式;(2)求圖像與x軸、y軸的交點坐標C、D,并求出直線AB與坐標軸所圍成的面積;(3)如果點M(a,)和N(-4,b)在直線AB上,求a,b的值。五、融會貫通——分類與分層第22頁,共71頁,2024年2月25日,星期天(三)求函數(shù)解析式的綜合應用
3.如圖,正比例函數(shù)y=2x的圖像與一次函數(shù)y=kx+b的圖像交于點A(m,2),一次函數(shù)圖像經(jīng)過點B(-2,-1),與y軸的交點為C與軸的交點為D.(1)求一次函數(shù)解析式;(2)求C點的坐標;(3)求△AOD的面積。五、融會貫通——分類與分層第23頁,共71頁,2024年2月25日,星期天
小明將父母給的零用錢按每月相等的數(shù)額存放在儲蓄盒內,準備捐給希望工程,盒內錢數(shù)y(元)與存錢月數(shù)x(月)之間的關系如圖所示,根據(jù)下圖回答下列問題:(1)求出y關于x的函數(shù)解析式。(2)根據(jù)關系式計算,小明經(jīng)過幾個月才能存夠200元?(四)與求函數(shù)解析式有關的實際應用題五、融會貫通——分類與分層第24頁,共71頁,2024年2月25日,星期天動動腦筋,動動手第25頁,共71頁,2024年2月25日,星期天1.某工廠生產(chǎn)A,B兩種型號的帳蓬,已知A型賬篷40頂和B型賬篷20頂共重2180kg,A型賬篷10頂和B型賬篷60頂共重2580kg,,且每種型號的帳蓬都是由防雨布和鋼材兩種材料制成。
(1)求A,B兩種型號的帳蓬每頂各重多少kg,并根據(jù)求得的結果把下表中的空格填上。防雨布鋼材每頂A型帳篷所需材料20KG16KG每頂B型帳篷所需材料25KG12KG第26頁,共71頁,2024年2月25日,星期天(2)汶川發(fā)生特大地震災害后,該工廠立即用現(xiàn)有的45噸防雨布和28.5噸鋼材突擊趕制上述兩種規(guī)格的帳篷2000頂,送往災區(qū)供災民居住,若生產(chǎn)A型帳篷x頂。①求x的取值范圍,并說明共有多少種生產(chǎn)方案。②若每種A型帳篷可解決問題10個災民的居住問題,每種B型帳篷可解決問題12個災民的居住問題,問如何安排生產(chǎn)可最大限度地解決災民居住問題,最多可解決多少個災民的居住問題。第27頁,共71頁,2024年2月25日,星期天2。(本小題滿分10分)某工程機械廠根據(jù)市場需求,計劃生產(chǎn)A、B兩種型號的大型挖掘機共100臺,該廠所籌生產(chǎn)資金不少于22400萬元,但不超過22500萬元,且所籌資金全部用于生產(chǎn)此兩型挖掘機,所生產(chǎn)的此兩型挖掘機可全部售出,此兩型挖掘機的生產(chǎn)成本和售價如下表:型號AB成本(萬元/臺)200240售價(萬元/臺)250300第28頁,共71頁,2024年2月25日,星期天(1)該廠對這兩型挖掘機有哪幾種生產(chǎn)方案?(2)該廠如何生產(chǎn)能獲得最大利潤?(3)根據(jù)市場調查,每臺B型挖掘機的售價不會改變,每臺A型挖掘機的售價將會提高m萬元(m>0),該廠應該如何生產(chǎn)可以獲得最大利潤?(注:利潤=售價-成本)第29頁,共71頁,2024年2月25日,星期天一手機經(jīng)銷商計劃購進某品牌的A型、B型、C型三款手機共60部,每款手機至少要購進8部,且恰好用完購機款61000元.設購進A型手機x部,B型手機y部.三款手機的進價和預售價如下表:手機型號A型B型C型進價(單位:元/部)90012001100預售價(單位:元/部)120016001300第30頁,共71頁,2024年2月25日,星期天(1)用含x,y的式子表示購進C型手機的部數(shù);(2)求出y與x之間的函數(shù)關系式;(3)假設所購進手機全部售出,綜合考慮各種因素,該手機經(jīng)銷商在購銷這批手機過程中需另外支出各種費用共1500元.①求出預估利潤P(元)與x(部)的函數(shù)關系式;(注:預估利潤P=預售總額-購機款-各種費用)②求出預估利潤的最大值,并寫出此時購進三款手機各多少部.
第31頁,共71頁,2024年2月25日,星期天.我市民政局組織品20輛汽車,裝運棉被,棉衣,食品三種救災物資共120箱,去捐助高邑縣雪災地區(qū),按計劃20輛車都要裝運,每輛車只能裝同一種救災物資,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:救災物資種類棉被棉衣食品每輛汽車載輛(箱)865每箱救災物資價值(百元)121610第32頁,共71頁,2024年2月25日,星期天(1)設裝運棉被的車輛數(shù)為x,設裝運棉衣車輛數(shù)為y,用含x,y的代數(shù)式表示裝運食品的車輛數(shù),并求y與x之間的關系式。(2)如果裝運每種救災物資的車輛都要不少于3輛,那么車輛的安排方案有幾種?并寫出每種安排方案。(3)若要使此捐贈物資的價值最大,應采用(2)中哪種安排方案?并求出最大價。第33頁,共71頁,2024年2月25日,星期天(08年湖北荊州市)“5?12”汶川大地震后,某健身器材銷售公司通過當?shù)亍凹t十字會”向災區(qū)獻愛心,捐出了五月份全部銷售利潤.已知該公司五月份只售出甲、乙、丙三種型號器材若干臺,每種型號器材不少于8臺,五月份支出包括這批器材進貨款64萬元和其他各項支出(含人員工資和雜項開支)3.8萬元.這三種器材的進價和售價如下表,人員工資y1(萬元)和雜項支出y2(萬元)分別與總銷售量x(臺)成一次函數(shù)關系(如圖).(1)求y與x的函數(shù)解析式;(2)求五月份該公司的總銷售量(3)設公司五月份售出甲種型號器材t臺,五月份總銷售利潤為W(萬元),求W與t的函數(shù)關系式;(銷售利潤=銷售額-進價-其他各項支出)(4)請推測該公司這次向災區(qū)捐款金額的最大值第34頁,共71頁,2024年2月25日,星期天第35頁,共71頁,2024年2月25日,星期天某個體戶購進一批時令水果,20天銷售完畢,他將本次銷售情況進行了跟蹤記錄,根據(jù)所記錄的數(shù)據(jù)可繪制如圖所示的函數(shù)圖象,其中日銷售量y(千克)與銷售時間x(天)之間的函數(shù)關系如圖甲所示,銷售單價p(元/千克)與銷售時間x(天)之間的函數(shù)關系如圖乙所示.(1)直接寫出y與x之間的函數(shù)關系式;(2)分別求出第10天和第15天的銷售金額;(3)若日銷售量不低于24千克的時間段為“最佳銷售期”,則此次銷售過程中“最佳銷售期”共有多少天?在此期間銷售單價最高為多少元?第36頁,共71頁,2024年2月25日,星期天第37頁,共71頁,2024年2月25日,星期天如圖,兩摞相同規(guī)格的飯碗整齊地疊放在桌面上,請根據(jù)圖中給的數(shù)據(jù)信息,解答下列問題:(1)求整齊擺放在桌面上飯碗的高度y(cm)與飯碗數(shù)x(個)之間的一次函數(shù)解析式;
(2)把這兩摞飯碗整齊地擺成一摞時,這摞飯碗的高度是多少?
第38頁,共71頁,2024年2月25日,星期天第39頁,共71頁,2024年2月25日,星期天春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.(1)求甲、乙兩種商品每件的進價分別是多少元?(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.
第40頁,共71頁,2024年2月25日,星期天山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為50000元,今年銷售總額將比去年減少20%,每輛銷售價比去年降低400元,若這兩年賣出的數(shù)量相同.A,B兩種型號車今年的進貨和銷售價格表:
(1)求今年A型車每輛售價多少元?(2)該車行計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,求銷售這批車獲得的最大利潤是多少元.
第41頁,共71頁,2024年2月25日,星期天A型車B型車進貨價格(元)11001400銷售價格(元)今年的銷售價格2000第42頁,共71頁,2024年2月25日,星期天為慶祝商都正式營業(yè),商都推出了兩種購物方案.方案一:非會員購物所有商品價格可獲九五折優(yōu)惠;方案二:如交納300元會費成為該商都會員,則所有商品價格可獲九折優(yōu)惠.(1)以x(元)表示商品價格,y(元)表示支出金額,分別寫出兩種購物方案中y關于x的函數(shù)解析式;(2)若某人計劃在商都購買價格為5880元的電視機一臺,請分析選擇哪種方案更省錢?
第43頁,共71頁,2024年2月25日,星期天一次函數(shù)y=kx+b的圖象與x、y軸分別交于點A(2,0),B(0,4).(1)求該函數(shù)的解析式;(2)O為坐標原點,設OA、AB的中點分別為C、D,P為OB上一動點,求PC+PD的最小值,并求取得最小值時P點的坐標.
第44頁,共71頁,2024年2月25日,星期天第45頁,共71頁,2024年2月25日,星期天如圖,直線OC、BC的函數(shù)關系式分別是y1=x和y2=-2x+6,動點P(x,0)在OB上運動(0<x<3),過點P作直線m與x軸垂直.
(1)求點C的坐標,并回答當x取何值時y1>y2?
(2)設△COB中位于直線m左側部分的面積為s,求出s與x之間函數(shù)關系式.
(3)當x為何值時,直線m平分△COB的面積?第46頁,共71頁,2024年2月25日,星期天第47頁,共71頁,2024年2月25日,星期天如圖,OA=3,OB=6,以A點為直角頂點的等腰三角形△ABC在第四象限.(1)求點C的坐標;(2)在第四象限是否存在一點P,使△APB和△ABC全等?若存在,求出P坐標;若不存在,請說明理由.第48頁,共71頁,2024年2月25日,星期天如圖,直線l1在平面直角坐標系中,與y軸交于點A,點B(-3,3)也在直線l1上,將點B先向右平移1個單位長度,再向下平移2個單位長度得到點C,點C恰好也在直線l1上.(1)求點C的坐標和直線l1的解析式;(2)若將點C先向左平移3個單位長度,再向上平移6個單位長度得到點D,請你判斷點D是否在直線l1上;(3)已知直線l2:y=x+b經(jīng)過點B,與y軸交于點E,求△ABE的面積.第49頁,共71頁,2024年2月25日,星期天第50頁,共71頁,2024年2月25日,星期天如圖,直線y=2x+m(m>0)與x軸交于點A(-2,0)直線y=-x+n(n>0)與x軸、y軸分別交于B、C兩點,并與直線y=2x+m(m>0)相交于點D,若AB=4.(1)求點D的坐標;(2)求出四邊形AOCD的面積;(3)若E為x軸上一點,且△ACE為等腰三角形,直接寫出點E的坐標.第51頁,共71頁,2024年2月25日,星期天第52頁,共71頁,2024年2月25日,星期天某校為了實施“大課間”活動,計劃購買籃球、排球共60個,跳繩120根.已知一個籃球70元,一個排球50元,一根跳繩10元.設購買籃球x個,購買籃球、排球和跳繩的總費用為y元.(1)求y與x之間的函數(shù)關系式;(2)若購買上述體育用品的總費用為4700元,問籃球、排球各買多少個?
第53頁,共71頁,2024年2月25日,星期天麗君花卉基地出售兩種盆栽花卉:太陽花6元/盆,繡球花10元/盆.若一次購買的繡球花超過20盆時,超過20盆部分的繡球花價格打8折.
(1)分別寫出兩種花卉的付款金額y(元)關于購買量x(盆)的函數(shù)解析式;
(2)為了美化環(huán)境,花園小區(qū)計劃到該基地購買這兩種花卉共90盆,其中太陽花數(shù)量不超過繡球花數(shù)量的一半.兩種花卉各買多少盆時,總費用最少,最少費用是多少元?第54頁,共71頁,2024年2月25日,星期天某電子產(chǎn)品生產(chǎn)車間工人20名,已知每名工人每天可生產(chǎn)甲種產(chǎn)品12個或乙種產(chǎn)品10個.且每生產(chǎn)一個甲種產(chǎn)品可獲得利潤50元,每生產(chǎn)一個乙種產(chǎn)品可獲得利潤80元.在這20名工人中,車間每天安排x名工人生產(chǎn)甲種產(chǎn)品,其余工人生產(chǎn)乙種產(chǎn)品.
(1)請寫出此車間每天獲取利潤y(元)與x(人)之間的函數(shù)關系式;
(2)若要使此車間每天獲取利潤為14000元,要派多少名工人去生產(chǎn)甲種產(chǎn)品?
(3)若要使此車間每天獲取利潤不低于14600元,你認為至少要派多少名工人去生產(chǎn)乙種產(chǎn)品才合適?第55頁,共71頁,2024年2月25日,星期天甲,乙兩輛汽車分別從A,B兩地同時出發(fā),沿同一條公路相向而行,乙車出發(fā)2h后休息,與甲車相遇后,繼續(xù)行駛.設甲,乙兩車與B地的路程分別為y甲(km),y乙(km),甲車行駛的時間為x(h),y甲,y乙與x之間的函數(shù)圖象如圖所示,結合圖象解答下列問題:(注:橫軸的3應該為5)(1)乙車休息了
h;(2)求乙車與甲車相遇后y乙與x的函數(shù)解析式,并寫出自變量x的取值范圍;(3)當兩車相距40km時,直接寫出x的值.第56頁,共71頁,2024年2月25日,星期天第57頁,共71頁,2024年2月25日,星期天甲、乙兩車從A地出發(fā)沿同一路線駛向B地,甲車先出發(fā)勻速駛向B地.40分鐘后,乙車出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時,由于滿載貨物,為了行駛安全,速度減少了50千米/時,結果與甲車同時到達B地.甲乙兩車距A地的路程y(千米)與乙車行駛時間x(小時)之間的函數(shù)圖象如圖所示.請結合圖象信息解答下列問題:(1)直接寫出a的值,并求甲車的速度;(2)求圖中線段EF所表示的y與x的函數(shù)關系式,并直接寫出自變量x的取值范圍;(3)乙車出發(fā)多少小時與甲車相距15千米?直接寫出答案.第58頁,共71頁,2024年2月25日,星期天第59頁,共71頁,2024年2月25日,星期天某超市預購進A、B兩種品牌的T恤共200件,已知兩種T恤的進價如表所示,設購進A種T恤x件,且所購進的兩種T恤全部賣出,獲得的總利潤為W元.
(1)求W關于x的函數(shù)關系式;(2)如果購進兩種T恤的總費用不超過9500元,那么超市如何進貨才能獲得最大利潤?并求出最大利潤.(提示:利潤=售價﹣進價)品牌進價(元/件)售價(元/件)A5080B4065第60頁,共71頁,2024年2月25日,星期天某蒜薹生產(chǎn)基地喜獲豐收,收獲蒜薹200噸.經(jīng)市場調查,可采用批發(fā)、零售、冷庫儲藏后銷售三種方式,并按這三種方式銷售,計劃平均每噸的售價及成本如下表:若經(jīng)過一段時間,蒜薹按計劃全部售出獲得的總利潤為y(元),蒜薹零售x(噸),且零售量是批發(fā)量的.小題1:求y與x之間的函數(shù)關系式;小題2:由于受條件限制,經(jīng)冷庫儲藏售出的蒜薹最多80噸,求該生產(chǎn)基地按計劃全部售完蒜薹獲得的最大利潤.
第61頁,共71頁,2024年2月25日,星期天第62頁,共71頁,2024年2月25日,星期天第63頁,共71頁,2024年2月25日,星期天2013年第64頁,共71頁,2024年2月25日,星期天21.(本題滿分8分)(2014年)小李從西安通過某快遞公司給在南昌的外婆寄一盒櫻桃,快遞時,他了解到這個公司除收取每次6元的包裝費外,櫻桃不超過1kg收費22元,超過1kg,則超
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44977-2024衛(wèi)星導航定位基準站網(wǎng)終端定位服務安全技術規(guī)范
- 天府新區(qū)信息職業(yè)學院《工程制圖與打印》2023-2024學年第一學期期末試卷
- 授權翻譯合同范例
- 個人轉讓鋼板合同范例
- 代理記賬外包服務合同范例
- 傳媒公司執(zhí)行合同范例
- 一起做游戲(教學實錄)-2024-2025學年一年級上冊數(shù)學北師大版
- 勞務支付合同范例
- 關于土地使用權合同范例
- 人衛(wèi)一類-口內練習題(含答案)
- 設計中重點、難點及關鍵技術問題把握控制及相應措施把握難點
- YY/T 0698.2-2009最終滅菌醫(yī)療器械包裝材料第2部分:滅菌包裹材料要求和試驗方法
- GB/T 3274-2007碳素結構鋼和低合金結構鋼熱軋厚鋼板和鋼帶
- 《鄉(xiāng)鎮(zhèn)環(huán)境治理研究開題報告文獻綜述11000字》
- 山東省高等醫(yī)學院校臨床教學基地水平評估指標體系與標準(修訂)
- 空白貨品簽收單
- 青海省全省市縣鄉(xiāng)鎮(zhèn)衛(wèi)生院街道社區(qū)衛(wèi)生服務中心基本公共衛(wèi)生服務醫(yī)療機構信息名單目錄450家
- 網(wǎng)絡暴力的法律規(guī)制開題報告
- 水泥混凝土路面施工方案85171
- 泰康人壽養(yǎng)老社區(qū)介紹課件
- T∕CSTM 00584-2022 建筑用晶體硅光伏屋面瓦
評論
0/150
提交評論