2024年內(nèi)蒙古烏蘭察布市八年級數(shù)學第二學期期末聯(lián)考模擬試題含解析_第1頁
2024年內(nèi)蒙古烏蘭察布市八年級數(shù)學第二學期期末聯(lián)考模擬試題含解析_第2頁
2024年內(nèi)蒙古烏蘭察布市八年級數(shù)學第二學期期末聯(lián)考模擬試題含解析_第3頁
2024年內(nèi)蒙古烏蘭察布市八年級數(shù)學第二學期期末聯(lián)考模擬試題含解析_第4頁
2024年內(nèi)蒙古烏蘭察布市八年級數(shù)學第二學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024年內(nèi)蒙古烏蘭察布市八年級數(shù)學第二學期期末聯(lián)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖1,動點K從△ABC的頂點A出發(fā),沿AB﹣BC勻速運動到點C停止.在動點K運動過程中,線段AK的長度y與運動時間x的函數(shù)關(guān)系如圖2所示,其中點Q為曲線部分的最低點,若△ABC的面積是55,則圖2中a的值為()A.30 B.5 C.7 D.352.如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為50和38,則△EDF的面積為()A.6 B.12 C.4 D.83.若反比例函數(shù)的圖象在第二、四象限,則的值是()A.-1或1 B.小于的任意實數(shù) C.-1 D.不能確定4.某小組5名同學在一周內(nèi)參加家務勞動的時間如下表,關(guān)于“勞動時間”的這組數(shù)據(jù),以下說法正確的是().勞動時間(小時)33.244.5人數(shù)1121A.中位數(shù)是4,平均數(shù)是3.74;B.中位數(shù)是4,平均數(shù)是3.75;C.眾數(shù)是4,平均數(shù)是3.75;D.眾數(shù)是2,平均數(shù)是3.8.5.小宇同學投擦10次實心球的成績?nèi)绫硭荆撼煽儯╩)11.811.91212.112.2頻數(shù)22231由上表可知小宇同學投擲10次實心球成績的眾數(shù)與中位數(shù)分別是()A.12m,11.9m B.12m,12.1m C.12.1m,11.9m D.12.1m,12m6.已知平行四邊形ABCD,下列條件中,不能判定這個平行四邊形為矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC7.一次函數(shù)y=x-1的圖像向上平移2個單位后,不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.某數(shù)學興趣小組6名成員通過一次數(shù)學競賽進行組內(nèi)評比,他們的成績分別是89,92,91,93,96,91,則關(guān)于這組數(shù)據(jù)說法正確的是()A.中位數(shù)是92.5 B.平均數(shù)是92 C.眾數(shù)是96 D.方差是59.如圖,在方格紙中,以AB為一邊作△ABP,使之與△ABC全等,從P1,P2,P3,P4四個點中找出符合條件的點P,則點P有()A.1個 B.2個 C.3個 D.4個10.下列圖案中,不是中心對稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.點A為數(shù)軸上表示實數(shù)的點,將點A沿數(shù)軸平移3個單位得到點B,則點B表示的實數(shù)是________.12.一個多邊形的每個外角都是,則這個多邊形的邊數(shù)是________.13.拋物線,當隨的增大而減小時的取值范圍為______.14.直角三角形ABC中,∠C=90,AC=BC=2,那么AB=_______.15.如圖,點O是矩形ABCD的對角線AC的中點,M是AD的中點,若OM=3,BC=8,則OB的長為________。16.若關(guān)于x的方程+=0有增根,則m的值是_____.17.矩形的一邊長是3.6㎝,兩條對角線的夾角為60o,則矩形對角線長是___________.18.邊長為的正方形ABCD與直角三角板如圖放置,延長CB與三角板的一條直角邊相交于點E,則四邊形AECF的面積為________.三、解答題(共66分)19.(10分)問題發(fā)現(xiàn):(1)如圖①,正方形ABCD的邊長為4,對角線AC、BD相交于點O,E是AB上點(點E不與A、B重合),將射線OE繞點O逆時針旋轉(zhuǎn)90°,所得射線與BC交于點F,則四邊形OEBF的面積為.問題探究:(2)如圖②,線段BQ=10,C為BQ上點,在BQ上方作四邊形ABCD,使∠ABC=∠ADC=90°,且AD=CD,連接DQ,求DQ的最小值;問題解決:(3)“綠水青山就是金山銀山”,某市在生態(tài)治理活動中新建了一處南山植物園,圖③為南山植物園花卉展示區(qū)的部分平面示意圖,在四邊形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC為觀賞小路,設(shè)計人員考慮到為分散人流和便觀賞,提出三條小路的長度和要取得最大,試求AB+BD+BC的最大值.20.(6分)李剛家去年養(yǎng)殖的“豐收一號”多寶魚喜獲豐收,上市20天全部售完,李剛對銷售情況進行了跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關(guān)系如圖所示.(1)觀察圖象,直接寫出日銷售量的最大值;(2)求李剛家多寶魚的日銷售量y與上市時間x的函數(shù)解析式.21.(6分)計算:(1);(2).22.(8分)如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.(1)求證:△BDF是等腰三角形;(2)如圖2,過點D作DG∥BE,交BC于點G,連接FG交BD于點O.①判斷四邊形BFDG的形狀,并說明理由;②若AB=6,AD=8,求FG的長.23.(8分)定義:我們把對角線互相垂直的四邊形叫做垂美四邊形.(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,那么四邊形ABCD是垂美四邊形嗎?請說明理由.(2)性質(zhì)探究:①如圖1,垂美四邊形ABCD兩組對邊AB、CD與BC、AD之間有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給出證明.②如圖3,在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(3)問題解決:如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE、BG,GE,已知AC=2,AB=1.求GE的長度.24.(8分)如圖,在四邊形中,,,,,,點從點出發(fā),以每秒單位的速度向點運動,點從點同時出發(fā),以每秒單位的速度向點運動,其中一個動點到達終點時,另一個動點也隨之停止運動,設(shè)運動時間為秒.(1)當時,若以點,和點,,,中的兩個點為頂點的四邊形為平行四邊形,且線段為平行四邊形的一邊,求的值.(2)若以點,和點,,,中的兩個點為頂點的四邊形為菱形,且線段為菱形的一條對角線,請直接寫出的值.25.(10分)如圖1,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(﹣3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H,連接BM.(1)菱形ABCO的邊長(2)求直線AC的解析式;(3)動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設(shè)△PMB的面積為S(S≠0),點P的運動時間為t秒,①當0<t<時,求S與t之間的函數(shù)關(guān)系式;②在點P運動過程中,當S=3,請直接寫出t的值.26.(10分)甲、乙兩人同時從相距90千米的A地前往B地,甲乘汽車,乙騎摩托車,甲到達B地停留半個小時后返回A地,如圖是他們離A地的距離(千米)與(時間)之間的函數(shù)關(guān)系圖像(1)求甲從B地返回A地的過程中,與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;(2)若乙出發(fā)后2小時和甲相遇,求乙從A地到B地用了多長時間?

參考答案一、選擇題(每小題3分,共30分)1、A【解析】

根據(jù)題意可知AB=AC,點Q表示點K在BC中點,由△ABC的面積是15,得出BC的值,再利用勾股定理即可解答.【詳解】由圖象的曲線部分看出直線部分表示K點在AB上,且AB=a,曲線開始AK=a,結(jié)束時AK=a,所以AB=AC.當AK⊥BC時,在曲線部分AK最小為1.所以12BC×1=15,解得BC=25所以AB=52故選:A.【點睛】此題考查動點問題的函數(shù)圖象,解題關(guān)鍵在于結(jié)合函數(shù)圖象進行解答.2、A【解析】

過點D作DH⊥AC于H,根據(jù)角平分線上的點到角的兩邊距離相等可得DF=DH,然后利用“HL”證明Rt△DEF和Rt△DGH全等,根據(jù)全等三角形的面積相等可得S△EDF=S△GDH,設(shè)面積為S,然后根據(jù)S△ADF=S△ADH列出方程求解即可.【詳解】解:如圖,過點D作DH⊥AC于H,

∵AD是△ABC的角平分線,DF⊥AB,

∴DF=DH,

在Rt△DEF和Rt△DGH中,,

∴Rt△DEF≌Rt△DGH(HL),

∴S△EDF=S△GDH,設(shè)面積為S,

同理Rt△ADF≌Rt△ADH,

∴S△ADF=S△ADH,

即38+S=50-S,

解得S=1.

故選A.【點睛】本題考查角平分線上的點到角的兩邊距離相等的性質(zhì),全等三角形的判定與性質(zhì),解題的關(guān)鍵是作輔助線構(gòu)造出全等三角形并利用角平分線的性質(zhì).3、C【解析】

根據(jù)反比例函數(shù)的定義列出方程且求解即可.【詳解】解:是反比例函數(shù),,,解之得.又因為圖象在第二,四象限,所以,解得,即的值是.故選:.【點睛】對于反比例函數(shù).(1),反比例函數(shù)圖像分布在一、三象限;(2),反比例函數(shù)圖像分布在第二、四象限內(nèi).4、A【解析】

平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù),結(jié)合圖表中的數(shù)據(jù)即可求出這組數(shù)據(jù)的平均數(shù)了;觀察圖表可知,只有勞動時間是4小時的人數(shù)是2,其他都是1人,據(jù)此即可得到眾數(shù),總共有5名同學,則排序后,第3名同學所對應的勞動時間即為中位數(shù),【詳解】觀察表格可得,這組數(shù)據(jù)的中位數(shù)和眾數(shù)都是4,平均數(shù)=(3+3.2+4×2+4.5)÷5=3.74.故選A.【點睛】此題考查加權(quán)平均數(shù),中位數(shù),解題關(guān)鍵在于看懂圖中數(shù)據(jù)5、D【解析】

根據(jù)眾數(shù)的定義,找到該組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)即為眾數(shù);根據(jù)中位數(shù)定義,將該組數(shù)據(jù)按從小到大依次排列,處于中間位置的兩個數(shù)的平均數(shù)即為中位數(shù).【詳解】解:由上表可知小宇同學投擲10次實心球成績的眾數(shù)是12.1m,中位數(shù)是=12(m),故選:D.【點睛】本題為統(tǒng)計題,考查眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.6、B【解析】【分析】由矩形的判定方法即可得出答案.【詳解】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定這個平行四邊形為矩形,正確;B、∠A=∠C不能判定這個平行四邊形為矩形,錯誤;C、AC=BD,對角線相等,可推出平行四邊形ABCD是矩形,故正確;D、AB⊥BC,所以∠B=90°,可以判定這個平行四邊形為矩形,正確,故選B.【點睛】本題考查了矩形的判定,熟練掌握“有一個角是直角的平行四邊形是矩形、對角線相等的平行四邊形是矩形、有三個角是直角的四邊形是矩形”是解題的關(guān)鍵.7、D【解析】試題解析:因為一次函數(shù)y=x-1的圖象向上平移2個單位后的解析式為:y=x+1,所以圖象不經(jīng)過四象限,故選D.考點:一次函數(shù)圖象與幾何變換.8、B【解析】試題解析:這組數(shù)據(jù)按照從小到大的順序排列為:89,91,91,92,93,96,則中位數(shù)為:,故A錯誤;平均數(shù)為:,故B正確;眾數(shù)為:91,故C錯誤;方差S2==,故D錯誤.故選A.9、C【解析】

要使△ABP與△ABC全等,必須使點P到AB的距離等于點C到AB的距離,即3個單位長度,所以點P的位置可以是P1,P2,P4三個,故選C.10、B【解析】

利用中心對稱圖形的性質(zhì),把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心,進而判斷得出即可.【詳解】A、是中心對稱圖形,故A選項錯誤;

B、不是中心對稱圖形,故B選項正確;

C、是中心對稱圖形,故C選項不正確;

D、是中心對稱圖形,故D選項錯誤;

故選:B.【點睛】此題主要考查了中心對稱圖形的定義,正確把握定義是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、或【解析】

根據(jù)點的坐標左移減右移加,可得答案.【詳解】點A為數(shù)軸上表示的點,將點A在數(shù)軸上向左平移3個單位長度到點B,則點B所表示的實數(shù)為;點A為數(shù)軸上表示的點,將點A在數(shù)軸上向右平移3個單位長度到點B,則點B所表示的實數(shù)為;故答案為或.【點睛】此題考查數(shù)軸,解題關(guān)鍵在于掌握平移的性質(zhì).12、【解析】

正多邊形的外角和是360°,而每個外角是18°,即可求得外角和中外角的個數(shù),即多邊形的邊數(shù).【詳解】設(shè)多邊形邊數(shù)為n,于是有18°×n=360°,解得n=20.即這個多邊形的邊數(shù)是20.【點睛】本題考查多邊形內(nèi)角和外角,熟練掌握多邊形的性質(zhì)及計算法則是解題關(guān)鍵.13、(也可以)【解析】

先確定拋物線的開口方向和對稱軸,即可確定答案.【詳解】解:∵的對稱軸為x=1且開口向上∴隨的增大而減小時的取值范圍為(也可以)【點睛】本題主要考查了二次函數(shù)增減性中的自變量的取值范圍,其中確定拋物線的開口方向和對稱軸是解答本題的關(guān)鍵.14、【解析】

根據(jù)勾股定理直接計算即可.【詳解】直角三角形ABC中,∠C=90,AC=BC=2,則.【點睛】本題是對勾股定理的考查,熟練掌握勾股定理及二次根式運算是解決本題的關(guān)鍵.15、5【解析】

根據(jù)矩形的性質(zhì)求出∠D=90°,OA=OB,AD=BC=8,求出AM,根據(jù)勾股定理求出OA即可.【詳解】∵四邊形ABCD為矩形,點M為AD的中點∴點O為AC的中點,BC=AD=8,AC=BD∴MO為三角形ACD的中位線∴MO=CD,即CD=6∴在直角三角形ACD中,由勾股定理得,AC==10?!郞B=BD=AC=5.【點睛】本題考查了矩形的性質(zhì)、勾股定理、三角形的中位線等知識點,能熟記矩形的性質(zhì)是解此題的關(guān)鍵,注意:矩形的對邊相等,矩形的對角線互相平分且相等,矩形的每個角都是直角.16、3【解析】

分式方程去分母轉(zhuǎn)化為整式方程,由分式方程有增根求出x的值,代入整式方程計算即可求出m的值.【詳解】去分母得:2﹣x+m=0,解得:x=2+m,由分式方程有增根,得到x﹣5=0,即x=5,把x=5代入得:m=3,故答案為:3【點睛】此題考查了分式方程的增根,增根確定后可按如下步驟進行:①化分式方程為整式方程;②把增根代入整式方程即可求得相關(guān)字母的值.17、7.2cm或cm【解析】①邊長3.6cm為短邊時,

∵四邊形ABCD為矩形,

∴OA=OB,

∵兩對角線的夾角為60°,

∴△AOB為等邊三角形,

∴OA=OB=AB=3.6cm,

∴AC=BD=2OA=7.2cm;

②邊長3.6cm為長邊時,

∵四邊形ABCD為矩形

∴OA=OB,

∵兩對角線的夾角為60°,

∴△AOB為等邊三角形,

∴OA=OB=AB,BD=2OB,∠ABD=60°,

∴OB=AB=,∴BD=;故答案是:7.2cm或cm.18、5【解析】

由四邊形ABCD為正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,進一步得到∠DAF=∠BAE,所以可以證明△AEB≌△AFD,所以S=S,那么它們都加上四邊形ABCF的面積,即可四邊形AECF的面積=正方形的面積,從而求出其面積.【詳解】∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD(ASA),∴S=S,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=5.故答案為:5.【點睛】此題考查全等三角形的判定與性質(zhì),正方形的性質(zhì),解題關(guān)鍵在于掌握判定定理.三、解答題(共66分)19、(1)4;(2)5;(3)600(+1).【解析】

(1)如圖①中,證明△EOB≌△FOC即可解決問題;(2)如圖②中,連接BD,取AC的中點O,連接OB,OD.利用四點共圓,證明∠DBQ=∠DAC=45°,再根據(jù)垂線段最短即可解決問題.(3)如圖③中,將△BDC繞點D順時針旋轉(zhuǎn)90°得到△EDA,首先證明AB+BC+BD=(+1)BD,當BD最大時,AB+BC+BD的值最大.【詳解】解:(1)如圖①中,∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∵∠EOF=90°,∴∠EOF=∠BOC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴S△EOB=S△OFC,∴S四邊形OEBF=S△OBC=?S正方形ABCD=4,故答案為:4;(2)如圖②中,連接BD,取AC的中點O,連接OB,OD.∵∠ABD=∠ADC=90°,AO=OC,∴OA=OC=OB=OD,∴A,B,C,D四點共圓,∴∠DBC=∠DAC,∵DA=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∴∠DBQ=45°,根據(jù)垂線段最短可知,當QD⊥BD時,QD的值最短,DQ的最小值=BQ=5.(3)如圖③中,將△BDC繞點D順時針旋轉(zhuǎn)90°得到△EDA,∵∠ABC+∠ADC=180°,∴∠BCD+∠BAD=∠EAD+BAD=180°,∴B,A,E三點共線,∵DE=DB,∠EDB=90°,∴BE=BD,∴AB+BC=AB+AE=BE=BD,∴BC+BC+BD=(+1)BD,∴當BD最大時,AB+BC+BD的值最大,∵A,B,C,D四點共圓,∴當BD為直徑時,BD的值最大,∵∠ADC=90°,∴AC是直徑,∴BD=AC時,AB+BC+BD的值最大,最大值=600(+1).【點睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),四點共圓,圓周角定理,垂線段最短等知識,解題的關(guān)鍵是學會添加常用輔助線面構(gòu)造全等三角形解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.20、(1)日銷售量的最大值為120千克;(2)李剛家多寶魚的日銷售量y與上市時間x的函數(shù)解析式為.【解析】分析:(1)觀察函數(shù)圖象,找出拐點坐標即可得出結(jié)論;(2)設(shè)李剛家多寶魚的日銷售量y與上市時間x的函數(shù)解析式為y=kx+b,分0≤x≤12和12<x≤20,找出圖象上點的坐標,利用待定系數(shù)法即可求出函數(shù)解析式.詳解:(1)觀察圖象,發(fā)現(xiàn)當x=12時,y=120為最大值,∴日銷售量的最大值為120千克.(2)設(shè)李剛家多寶魚的日銷售量y與上市時間x的函數(shù)解析式為y=kx+b,當0≤x≤12時,有,解得:,∴此時日銷售量y與上市時間x的函數(shù)解析式為y=10x;當12<x≤20時,有,解得:,∴此時日銷售量y與上市時間x的函數(shù)解析式為y=﹣15x+1.綜上可知:李剛家多寶魚的日銷售量y與上市時間x的函數(shù)解析式為y=.點睛:本題考查了一次函數(shù)的應用、一次函數(shù)的圖象以及待定系數(shù)法求函數(shù)解析式,解題的關(guān)鍵是:(1)觀察函數(shù)圖象,找出最高點;(2)分段利用待定系數(shù)法求出函數(shù)解析式.本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)函數(shù)圖象找出點的坐標,利用待定系數(shù)法求出函數(shù)解析式是關(guān)鍵.21、(1);(2)3.【解析】

根據(jù)二次根式的運算法則依次計算即可【詳解】(1)解:原式=-=(2)解:原式=+=3【點睛】熟練掌握二次根式的計算是解決本題的關(guān)鍵,難度不大22、(1)見解析;(2)①菱形,見解析;②.【解析】

(1)根據(jù)兩直線平行內(nèi)錯角相等及折疊特性判斷;(2)①根據(jù)已知矩形性質(zhì)及第一問證得鄰邊相等判斷;②根據(jù)折疊特性設(shè)未知邊,構(gòu)造勾股定理列方程求解.【詳解】(1)證明:如圖1,根據(jù)折疊,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四邊形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE∴四邊形BFDG是平行四邊形,∵DF=BF,∴四邊形BFDG是菱形;②∵AB=6,AD=8,∴BD=10.∴OB=BD=5.假設(shè)DF=BF=x,∴AF=AD?DF=8?x.∴在直角△ABF中,AB+AF=BF,即6+(8?x)=x,解得x=,即BF=,∴FO=,∴FG=2FO=【點睛】此題考查四邊形綜合題,解題關(guān)鍵在于利用勾股定理進行計算.23、(1)四邊形ABCD是垂美四邊形,證明見解析(2)①,證明見解析;②四邊形FMAN是矩形,證明見解析(3)【解析】

(1)根據(jù)垂直平分線的判定定理證明即可;(2)①根據(jù)垂直的定義和勾股定理解答即可;②根據(jù)在Rt△ABC中,點F為斜邊BC的中點,可得,再根據(jù)△ABD和△ACE是等腰三角形,可得,再由(1)可得,,從而判定四邊形FMAN是矩形;(3)根據(jù)垂美四邊形的性質(zhì)、勾股定理、結(jié)合(2)的結(jié)論計算即可.【詳解】(1)四邊形ABCD是垂美四邊形連接AC、BD∵∴點A在線段BD的垂直平分線上∵∴點C在線段BD的垂直平分線上∴直線AC是線段BD的垂直平分線∴∴四邊形ABCD是垂美四邊形;(2)①,理由如下如圖,已知四邊形ABCD中,,垂足為E由勾股定理得②四邊形FMAN是矩形,理由如下如圖,連接AF∵在Rt△ABC中,點F為斜邊BC的中點∵△ABD和△ACE是等腰三角形由(1)可得,∵∴四邊形FMAN是矩形;(3)連接CG、BE,,即在△AGB和△ACE中∵,即∴四邊形CGEB是垂美四邊形由(2)得.【點睛】本題考查了垂美四邊形的問題,掌握垂直平分線的判定定理、垂直的定義、勾股定理、垂美四邊形的性質(zhì)、全等三角形的性質(zhì)以及判定定理是解題的關(guān)鍵.24、(1)當t=或4時,線段為平行四邊形的一邊;(2)v的值是2或1【解析】

(1)由線段為平行四邊形的一邊分兩種情況,利用平行四邊形的性質(zhì)對邊相等建立方程求解即可得到結(jié)論;(2)由線段為菱形的一條對角線,用菱形的性質(zhì)建立方程求解即可求出速度.【詳解】(1)由線段為平行四邊形的一邊,分兩種情況:①當P、Q兩點與A、B兩點構(gòu)成的四邊形是平行四邊形時,∵AP∥BQ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論