![2024屆黑龍江省哈爾濱市賓縣八年級下冊數(shù)學期末質量檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view3/M02/19/24/wKhkFmYas26AUeACAAGqIh5atSI215.jpg)
![2024屆黑龍江省哈爾濱市賓縣八年級下冊數(shù)學期末質量檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view3/M02/19/24/wKhkFmYas26AUeACAAGqIh5atSI2152.jpg)
![2024屆黑龍江省哈爾濱市賓縣八年級下冊數(shù)學期末質量檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view3/M02/19/24/wKhkFmYas26AUeACAAGqIh5atSI2153.jpg)
![2024屆黑龍江省哈爾濱市賓縣八年級下冊數(shù)學期末質量檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view3/M02/19/24/wKhkFmYas26AUeACAAGqIh5atSI2154.jpg)
![2024屆黑龍江省哈爾濱市賓縣八年級下冊數(shù)學期末質量檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view3/M02/19/24/wKhkFmYas26AUeACAAGqIh5atSI2155.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆黑龍江省哈爾濱市賓縣八年級下冊數(shù)學期末質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.已知一次函數(shù)y=kx+b(k≠0),若k+b=0,則該函數(shù)的圖像可能是A. B.C. D.2.在一次酒會上,每兩人都只碰一次杯,如果一共碰杯55次,則參加酒會的人數(shù)為(
)A.9人 B.10人 C.11人 D.12人3.如圖,在四邊形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,點P從點A出發(fā),以每秒3cm的速度沿折線A-B-C-D方向運動,點Q從點D出發(fā),以每秒2cm的速度沿線段DC方向向點C運動、已知動點P,Q同時出發(fā),當點Q運動到點C時,點P,Q停止運動,設運動時間為t秒,在這個運動過程中,若△BPQ的面積為20cm2,則滿足條件的t的值有(
)A.1個 B.2個 C.3個 D.4個4.反比例函數(shù)y=,當x的值由n(n>0)增加到n+2時,y的值減少3,則k的值為()A. B. C.﹣ D.5.某市為解決部分市民冬季集中取暖問題,需鋪設一條長4000米的管道,為盡量減少施工對交通造成的影響,施工時“…”,設實際每天鋪設管道x米,則可得方程=20,根據(jù)此情景,題中用“…”表示的缺失的條件應補為()A.每天比原計劃多鋪設10米,結果延期20天完成B.每天比原計劃少鋪設10米,結果延期20天完成C.每天比原計劃多鋪設10米,結果提前20天完成D.每天比原計劃少鋪設10米,結果提前20天完成6.在四邊形ABCD中,對角線AC、BD相交于點O,從①AB=CD;②AB∥CD;③OA=OC;④OB=OD;⑤AC⊥BD;⑥AC平分∠BAD;這六個條件中,則下列各組組合中,不能推出四邊形ABCD為菱形的是(?)A.①②⑤ B.①②⑥ C.③④⑥ D.①②④7.如圖,△ABC的面積為1,分別取AC、BC兩邊的中點A1、B1,則四邊形A1ABB1的面積為,再分別取A1C、B1C的中點A2、B2,取A2C、B2C的中點A3、B3,依次取下去…利用這一圖形,能直觀地計算出()A.1 B. C. D.8.如果三個數(shù)a、b、c的中位數(shù)與眾數(shù)都是5,平均數(shù)是4,那么b的值為()A.2 B.4 C.5 D.5或29.如圖,四邊形ABCD的對角線AC,BD相交于點O,且AB∥CD,添加下列條件后仍不能判斷四邊形ABCD是平行四邊形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC10.若分式有意義,則實數(shù)的取值范圍是()A.x=2 B.x=-2 C.x≠2 D.x≠-2二、填空題(每小題3分,共24分)11.如圖,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點F是AB中點,兩邊FD,F(xiàn)E分別交AC,BC于點D,E兩點,當∠DFE在△ABC內繞頂點F旋轉時(點D不與A,C重合),給出以下個結論:①CD=BE;②四邊形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四邊形CDFE=S△ABC.上述結論中始終正確的有______.(填序號)12.關于x的一次函數(shù),當_________時,它的圖象過原點.13.如圖,中,,平分,點為的中點,連接,若的周長為24,則的長為______.14.在函數(shù)中,自變量的取值范圍是__________.15.化簡:=_____.16.如圖,將沿所在的直線平移得到,如果,,,那么______.17.過邊形的一個頂點共有2條對角線,則該邊形的內角和是__度.18.一組數(shù)據(jù)2,3,1,3,5,4,這組數(shù)據(jù)的眾數(shù)是___________.三、解答題(共66分)19.(10分)甲、乙兩家草莓采摘園的草莓品質相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為(元),在乙采摘園所需總費用為(元),圖中折線OAB表示與x之間的函數(shù)關系.(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克元;(2)求、與x的函數(shù)表達式;(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.20.(6分)某通訊公司推出①、②兩種收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關系如圖所示.(1)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關系式;(2)何時兩種收費方式費用相等?21.(6分)如圖,在ΔABC中,AB=BC,∠A=2α,點D是BC邊的中點,DE⊥AB于點E,DF⊥AC于點F.(1)∠EDB=________(用含α的式子表示)(2)作射線DM與邊AB交于點M,射線DM繞點D順時針旋轉180°-2α,與AC邊交于點N.根據(jù)條件補全圖形,并寫出DM與DN22.(8分)解方程:x-1x-2-423.(8分)(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°—∠AMN-—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.(下面請你完成余下的證明過程)(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD……X”,請你作出猜想:當∠AMN=""°時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)24.(8分)如圖,菱形中,是的中點,,.(1)求對角線,的長;(2)求菱形的面積.25.(10分)先化簡,再求值:,其中是不等式的正整數(shù)解.26.(10分)如圖,反比例函數(shù)y=(x>0)過點A(3,4),直線AC與x軸交于點C(6,0),過點C作x軸的垂線BC交反比例函數(shù)圖象于點B.(1)求k的值與B點的坐標;(2)在平面內有點D,使得以A,B,C,D四點為頂點的四邊形為平行四邊形,試寫出符合條件的所有D點的坐標.
參考答案一、選擇題(每小題3分,共30分)1、A【解析】
由k+b=0且k≠0可知,y=kx+b的圖象在一、三、四象限或一、二、四象限,觀察四個選項即可得出結論.【詳解】解:由題意可知:當k<0時,則b>0,圖象經過一、二、四象限;當k>0時,則b<0,圖象經過一、三、四象限.故選A.【點睛】本題考查了一次函數(shù)圖象與系數(shù)的關系,由k+b=0且k≠0找出一次函數(shù)圖象在一、三、四象限或一、二、四象限是解題的關鍵.2、C【解析】
設參加酒會的人數(shù)為x人,根據(jù)每兩人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【詳解】設參加酒會的人數(shù)為x人,依題可得:
x(x-1)=55,
化簡得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案為C.【點睛】考查了一元二次方程的應用,解題的關鍵是根據(jù)題中的等量關系列出方程.3、B【解析】
過A作AH⊥DC,由勾股定理求出DH的長.然后分三種情況進行討論:即①當點P在線段AB上,②當點P在線段BC上,③當點P在線段CD上,根據(jù)三種情況點的位置,可以確定t的值.【詳解】解:過A作AH⊥DC,∴AH=BC=2cm,DH===1.i)當P在AB上時,即時,如圖,,解得:;ii)當P在BC上時,即<t≤1時,BP=3t-10,CQ=11-2t,,化簡得:3t2-34t+100=0,△=-44<0,∴方程無實數(shù)解.iii)當P在線段CD上時,若點P在線段CD上,若點P在Q的右側,即1≤t≤,則有PQ=34-5t,,<1(舍去);若點P在Q的左側時,即,則有PQ=5t-34,;t=7.2.綜上所述:滿足條件的t存在,其值分別為,t2=7.2.故選B.【點睛】本題是平行四邊形中的動點問題,解決問題時,一定要變動為靜,將其轉化為常見的幾何問題,再進行解答.4、D【解析】
根據(jù)函數(shù)的增減性,可得分式方程,根據(jù)解分式方程,可得答案.【詳解】由題意,得﹣=3,解得k=,故選:D.【點睛】本題考查了反比例函數(shù),利用函數(shù)的增減性得出分式方程是解題關鍵.5、C【解析】
由給定的分式方程,可找出缺失的條件為:每天比原計劃多鋪設10米,結果提前20天完成.此題得解.【詳解】解:∵利用工作時間列出方程:,∴缺失的條件為:每天比原計劃多鋪設10米,結果提前20天完成.故選:C.【點睛】本題考查了由實際問題抽象出分式方程,由列出的分式方程找出題干缺失的條件是解題的關鍵.6、D【解析】
根據(jù)題目中所給條件可得①②組合,③④組合都能判定四邊形為平行四邊形,再根據(jù)一組鄰邊相等的平行四邊形是菱形(平行四邊形+一組鄰邊相等=菱形);四條邊都相等的四邊形是菱形;對角線互相垂直的平行四邊形是菱形進行判定.【詳解】,,四邊形是平行四邊形,如果加上條件⑤可利用對角線互相垂直的平行四邊形是菱形進行判定;如果加上條件⑥平分可證明鄰邊相等,根據(jù)鄰邊相等的平行四邊形是菱形進行判定;,,四邊形是平行四邊形,如果加上條件⑥平分可證明鄰邊相等,根據(jù)鄰邊相等的平行四邊形是菱形進行判定.故選:.【點睛】此題主要考查了菱形的判定,關鍵是掌握菱形的判定方法:①菱形定義:一組鄰邊相等的平行四邊形是菱形(平行四邊形+一組鄰邊相等=菱形);②四條邊都相等的四邊形是菱形;③對角線互相垂直的平行四邊形是菱形(或“對角線互相垂直平分的四邊形是菱形”).7、C【解析】
對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后用一個統(tǒng)一的式子表示出變化規(guī)律是此類題目中的難點.【詳解】解:∵A1、B1分別是AC、BC兩邊的中點,且△ABC的面積為1,∴△A1B1C的面積為∴四邊形A1ABB1的面積=△ABC的面積-△A1B1C的面積
;∴四邊形A2A1B1B2的面積=的面積-的面積
…∴第n個四邊形的面積
∴故答案為:C【點睛】本題主要考查了學生通過特例分析從而歸納總結出一般結論的能力.8、D【解析】
該數(shù)據(jù)的中位數(shù)與眾數(shù)都是5,可以根據(jù)中位數(shù)、眾數(shù)、平均數(shù)的定義,設出未知數(shù)列方程解答.【詳解】解:設另一個數(shù)為x,則5+5+x=4×3,解得x=1,即b=5或1.故選D.【點睛】本題主要考查眾數(shù)、中位數(shù)、平均數(shù),用方程解答數(shù)據(jù)問題是一種重要的思想方法.平均數(shù)是數(shù)據(jù)之和再除以總個數(shù);中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.9、D【解析】
根據(jù)平行四邊形的判定定理逐個判斷即可;1、兩組對邊分別平行的四邊形是平行四邊形;2、兩組對邊分別相等的四邊形是平行四邊形;3、對角線互相平分的四邊形是平行四邊形;4、一組對邊平行且相等的四邊形是平行四邊形;5、兩組對角分別相等的四邊形是平行四邊形.【詳解】A、由“一組對邊平行且相等的四邊形是平行四邊形”可得出四邊形ABCD是平行四邊形;B、由“兩組對邊分別平行的四邊形是平行四邊形”可得出四邊形ABCD是平行四邊形;C、由AB∥CD可得出∠BAO=∠DCO、∠ABO=∠CDO,結合OA=OC可證出△ABO≌△CDO(AAS),根據(jù)全等三角形的性質可得出AB=CD,由“一組對邊平行且相等的四邊形是平行四邊形”可得出四邊形ABCD是平行四邊形;D、由AB∥CD、AD=BC無法證出四邊形ABCD是平行四邊形.故選D.【點評】本題考查了平行四邊形的判定以及全等三角形的判定與性質,逐一分析四個選項給定條件能否證明四邊形ABCD是平行四邊形是解題的關鍵.10、D【解析】
根據(jù)分式有意義分母不能為零即可解答.【詳解】∵分式有意義,∴x+2≠0,∴x≠-2.故選:D.【點睛】本題考查了分式有意義的條件,分式分母不能為零是解題的關鍵點.二、填空題(每小題3分,共24分)11、①③④【解析】
首先連接CF,由等腰直角三角形的性質可得:,則證得∠DCF=∠B,∠DFC=∠EFB,然后可證得:△DCF≌△EBF,由全等三角形的性質可得CD=BE,DF=EF,也可證得S四邊形CDFE=S△ABC.問題得解.【詳解】解:連接CF,
∵AC=BC,∠ACB=90°,點F是AB中點,∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DFC+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正確;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正確;
∴S△DCF=S△BEF,
∴S四邊形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC.,故④正確.
若EF⊥BC時,則可得:四邊形CDFE是矩形,
∵DF=EF,
∴四邊形CDFE是正方形,故②錯誤.
∴結論中始終正確的有①③④.
故答案為:①③④.【點睛】此題考查了全等三角形的判定與性質,等腰直角三角形的性質,正方形的判定等知識.題目綜合性很強,但難度不大,注意數(shù)形結合思想的應用.12、【解析】
由一次函數(shù)圖像過原點,可知其為正比例函數(shù),所以,求出k值即可.【詳解】解:函數(shù)圖像過原點該函數(shù)為正比例函數(shù)故答案為:【點睛】本題考查了一次函數(shù)與正比例函數(shù),一次函數(shù),當時,為正比例函數(shù),正比例函數(shù)圖像過原點,正確理解正比例函數(shù)的概念及性質是解題的關鍵.13、18【解析】
利用等腰三角形三線合一的性質可得BD=CD,又因E為AC中點,根據(jù)三角形的中位線定理及直角三角形斜邊中線的性質可得CE=AC=7.5,DE=AB=7.5,再由△CDE的周長為24,求得CD=9,即可求得BC的長.【詳解】∵AB=AC,AD平分∠BAC,∴BD=CD,AD⊥BC,∵E為AC中點,∴CE=AC==7.5,DE=AB==7.5,∵CD+DE+CE=24,∴CD=24-7.5-7.5=9,∴BC=18,故答案為18.【點睛】本題考查了等腰三角形的性質、三角形的中位線定理及直角三角形斜邊的性質,求得CE=AC=7.5,DE=AB=7.5是解決問題的關鍵.14、x≠2【解析】
根據(jù)分式有意義的條件進行求解即可.【詳解】由題意得,2x-4≠0,解得:x≠2,故答案為:x≠2.【點睛】本題考查了函數(shù)自變量的取值范圍,一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)非負.15、1【解析】
根據(jù)二次根式的乘法,化簡即可得解.【詳解】解:==1.故答案為:1.【點睛】本題主要考查二次根式的乘法法則,熟悉掌握法則是關鍵.16、【解析】
根據(jù)已知條件和平移的性質推出AB=DE=7,△ABC∽△GEC,即可根據(jù)相似三角形性質計算GE的長度.【詳解】解:∵△ABC沿著射線BC的方向平移得到△DEF,AB=7,
∴DE=7,∠A=∠CGE,∠B=∠DEC,
∴△DEF∽△GEC,∴,
∵,,∴,∴EG=,
故填:.【點睛】本題主要考查平移的性質、相似三角形的判定和性質,解題的關鍵在于求證三角形相似,找到對應邊.17、1【解析】
n邊形從一個頂點出發(fā)可引出(n-3)條對角線.從n個頂點出發(fā)引出(n-3)條;多邊形內角和定理:(n-2)?180(n≥3)且n為整數(shù)).【詳解】解:過n邊形的一個頂點共有2條對角線,則n=2+3=5,該n邊形的內角和是(5-2)×180°=1°,故答案為:1.【點睛】本題考查了多邊形內角和,熟記多邊形內角和定理:(n-2)?180(n≥3)且n為整數(shù))是解題的關鍵.18、1【解析】
根據(jù)眾數(shù)的概念即可得到結果.【詳解】解:在這組數(shù)據(jù)中1出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則這組數(shù)據(jù)的眾數(shù)是1;
故答案為:1.【點睛】此題考查了眾數(shù)的定義;熟記眾數(shù)的定義是解決問題的關鍵.三、解答題(共66分)19、(1)1;(2),;(3)<x<.【解析】試題分析:(1)根據(jù)單價=總價÷數(shù)量,即可解決問題.(2)y1函數(shù)表達式=50+單價×數(shù)量,y2與x的函數(shù)表達式結合圖象利用待定系數(shù)法即可解決.(3)畫出函數(shù)圖象后y1在y2下面即可解決問題.試題解析:(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克10÷10=1元.故答案為1.(2)由題意,;(3)函數(shù)y1的圖象如圖所示,由解得:,所以點F坐標(,125),由,解得:,所以點E坐標(,650).由圖象可知甲采摘園所需總費用較少時<x<.考點:分段函數(shù);函數(shù)最值問題.20、(1);;(2)300分鐘.【解析】
(1)根據(jù)圖象經過的點的坐標設出函數(shù)的解析式,用待定系數(shù)法求函數(shù)的解析式即可;(2)根據(jù)(1)的結論列方程解答即可.【詳解】解:(1)設,,由題意得:將,分別代入即可:,,,故所求的解析式為;;(2)當通訊時間相同時,得,解得.答:通話300分鐘時兩種收費方式費用相等.【點睛】本題考查的是用一次函數(shù)解決實際問題,熟悉相關性質是解題的關鍵.21、(1)α;(2)DM=DN,理由見解析【解析】
(1)先利用等腰三角形的性質和三角形內角和得到∠B=∠C=90°-α,然后利用互余可得到∠EDB=α;(2)①如圖,利用∠EDF=180°-2α畫圖;②先利用等腰三角形的性質得到DA平分∠BAC,再根據(jù)角平分線性質得到DE=DF,根據(jù)四邊形內角和得到∠EDF=180°-2α,所以∠MDE=∠NDF,然后證明△MDE≌△NDF得到DM=DN;【詳解】解:(1)∵AB=AC,
∴∠B=∠C=12(180°-∠A)=90°-α,
而DE⊥AB,
∴∠DEB=90°,
∴∠EDB=90°-∠B=90°-(90°-α)=α;
故答案為:α(2)①補全圖形如圖所示.②結論:DM=DN.理由;在四邊形AEDF中,∠A=2α,DE⊥AB于點E,DF⊥AC于點F,∴∠EDF=360連接AD,∵點D是BC邊的中點,AB=AC,∴DE=DF,又∵射線DM繞點D順時針旋轉180°-2a與AC邊交于點∴∠MDN=180∵∠EDM+∠MDF=∠FDN+∠MDF=180∴∠EDM=∠FDN,∴ΔDEM?ΔDFN,∴DM=DN.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等腰三角形的性質,全等三角形的判定和性質,解題的關鍵是利用數(shù)形結合區(qū)找出邊和角的關系,然后解決問題.22、x=-1【解析】
方程兩邊同時乘以最簡公分母x2-4,把分式方程轉化為整式方程求解.【詳解】解:方程兩邊都乘以(x+2)(x-2)得:(x-1)(x+2)-4=2(x+2)(x-2),即x2-x-2=0,解得:x=-1或2,檢驗:當x=-1時,(x+2)(x-2)≠0,所以x=-1是原方程的解,當x=2時,(x+2)(x-2)=0,所以x=2不是原方程的解,所以原方程組的解為:x=-1.故答案為:x=-1.【點睛】本題考查了解分式方程.23、(1)見詳解;(2)見詳解;(3)【解析】
(1)要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對應邊成比例得出AM=MN.
(2)同(1),要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對應邊成比例得出AM=MN.
(3)由(1)(2)可知,∠AMN等于它所在的正多邊形的一個內角即等于時,結論AM=MN仍然成立.【詳解】(1)證明:在邊AB上截取AE=MC,連接ME.∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°?∠AMN?∠AMB=180°?∠B?∠AMB=∠MAB=∠MAE,BE=AB?AE=BC?MC=BM,∴∠BEM=45°,∴∠AEM=135°.∵N是∠DCP的平分線上一點,∴∠NCP=45°,∴∠MCN=135°.在△AEM與△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)結論AM=MN還成立證明:在邊AB上截取AE=MC,連接ME.在正△ABC中,∠B=∠BCA=60°,AB=BC.∴∠NMC=180°?∠AMN?∠AMB=180°?∠B?∠AMB=∠MAE,BE=AB?AE=BC?MC=BM,∴∠BEM=60°,∴∠AEM=120°.∵N是∠ACP的平分線上一點,∴∠ACN=60°,∴∠MCN=120°.在△AEM與△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X,則當∠AMN=時,結論AM=MN仍然成立.24、(1),;(2)【解析】
(1)根據(jù)是的中點,得到,再根據(jù)菱形的性質得到是等邊三角形,得到BD的長,再利用勾股定理進而可以求出AO的長度,根據(jù)AC=2AO得到答案;(2)根據(jù)菱形的面積等于兩對角線的積的一半,列式求解即可得到答案;【詳解】解:(1)為的中點,,菱形中,,,是等邊三角形,,,;(2)菱形的面積;【點睛】本題主要考查了菱形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國自動式雙面研磨床行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 土地廠房買賣合同
- 空心磚采購合同
- 石材采購合同范本
- 涂料勞務承包合同協(xié)議書
- 醫(yī)療器械配送合同
- 汽車貨物運輸合同樣本
- 2025農村簡易買賣合同
- 2025如何確定勞動合同的成立商業(yè)保理資格
- 最高額抵押擔保合同
- 2025財年美國國防預算概覽-美國國防部(英)
- 2024年江西省南昌市中考一模數(shù)學試題(含答案)
- 48貴州省貴陽市2023-2024學年五年級上學期期末數(shù)學試卷
- 《采暖空調節(jié)能技術》課件
- 游戲綜合YY頻道設計模板
- arcgis軟件操作解析課件
- 中興ZCTP 5GC高級工程師認證考試題庫匯總(含答案)
- 大學生創(chuàng)新創(chuàng)業(yè)教程PPT全套完整教學課件
- 小學科學項目化作業(yè)的設計與實施研究
- 2020年中考生物試卷及答案
- MCNP-5A程序使用說明書
評論
0/150
提交評論