廣東省惠州市博羅縣2024年數(shù)學(xué)八年級下冊期末達(dá)標(biāo)檢測試題含解析_第1頁
廣東省惠州市博羅縣2024年數(shù)學(xué)八年級下冊期末達(dá)標(biāo)檢測試題含解析_第2頁
廣東省惠州市博羅縣2024年數(shù)學(xué)八年級下冊期末達(dá)標(biāo)檢測試題含解析_第3頁
廣東省惠州市博羅縣2024年數(shù)學(xué)八年級下冊期末達(dá)標(biāo)檢測試題含解析_第4頁
廣東省惠州市博羅縣2024年數(shù)學(xué)八年級下冊期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省惠州市博羅縣2024年數(shù)學(xué)八年級下冊期末達(dá)標(biāo)檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.下列二次根式中,最簡二次根式的是()A. B. C. D.2.如圖,在四個均由十六個小正方形組成的正方形網(wǎng)格中,各有一個三角形ABC,那么這四個三角形中,不是直角三角形的是()A. B.C. D.3.如圖,?ABCD的對角線AC,BD交于點(diǎn)O,E為AB的中點(diǎn),連結(jié)OE,若AC=12,△OAE的周長為15,則?ABCD的周長為()A.18 B.27 C.36 D.424.分式有意義,則x的取值范圍是()A.x1 B.x0 C.x1 D.x15.一個多邊形的內(nèi)角和比它的外角和的3倍少180°,則這個多邊形的邊數(shù)為()A.5 B.6 C.7 D.86.下表記錄了甲、乙、丙、丁四名運(yùn)動員參加男子跳高選拔賽成績的平均數(shù)x與方差S2:甲乙丙丁平均數(shù)(cm)175173175174方差S2(cm2)3.53.512.515根據(jù)表中數(shù)據(jù),要從中選擇一名成績好又發(fā)揮穩(wěn)定的運(yùn)動員參加比賽,應(yīng)該選擇()A.甲 B.乙 C.丙 D.丁7.已知一次函數(shù),隨著的增大而增大,則的取值范圍是()A. B. C. D.8.在△ABC中,∠A:∠B:∠C=1:1:2,則下列說法錯誤的是()A.a(chǎn)2=b2﹣c2 B.c2=2a2 C.a(chǎn)=b D.∠C=90°9.如果=2﹣x,那么()A.x<2 B.x≤2 C.x>2 D.x≥210.不等式組的最小整數(shù)解是()A.0 B.-1 C.1 D.2二、填空題(每小題3分,共24分)11.如圖,菱形ABCD中,E、F分別是AB、AC的中點(diǎn),若EF=3,則菱形ABCD的周長是.12.將一次函數(shù)y=2x的圖象向上平移1個單位,所得圖象對應(yīng)的函數(shù)表達(dá)式為__________.13.一組數(shù)據(jù)1,3,1,5,2,a的眾數(shù)是a,這組數(shù)據(jù)的中位數(shù)是_________.14.已知一次函數(shù)y=kx+3k+5的圖象與y軸的交點(diǎn)在y軸的正半軸上,且函數(shù)值y隨x的增大而減小,則k所有可能取得的整數(shù)值為_____15.當(dāng)x=________時,分式的值為零.16.在Rt△ABC中,∠B=90°,∠C=30°,AB=2,則BC的長為______.17.最簡二次根式與是同類二次根式,則a的取值為__________.18.若一組數(shù)據(jù)的平均數(shù)為17,方差為2,則另一組數(shù)據(jù)的平均數(shù)和方差分別為()A.17,2 B.18,2 C.17,3 D.18,3三、解答題(共66分)19.(10分)在梯形中,,,,,,點(diǎn)E、F分別在邊、上,,點(diǎn)P與在直線的兩側(cè),,,射線、與邊分別相交于點(diǎn)M、N,設(shè),.(1)求邊的長;(2)如圖,當(dāng)點(diǎn)P在梯形內(nèi)部時,求關(guān)于x的函數(shù)解析式,并寫出定義域;(3)如果的長為2,求梯形的面積.20.(6分)如圖,等邊△ABC的邊長6cm.①求高AD;②求△ABC的面積.21.(6分)有20個邊長為1的小正方形,排列形式如圖所示,請將其分割,拼接成一個正方形,求拼接后的正方形的邊長.22.(8分)如圖,在矩形ABCD中,點(diǎn)E在AD上,EC平分∠BED(1)判斷△BEC的形狀,并加以證明;(2)若∠ABE=45°,AB=2時,求BC的長.23.(8分)在平面直角坐標(biāo)系xOy中,直線l與x軸,y軸分別交于A、B兩點(diǎn),且過點(diǎn)B(0,4)和C(2,2)兩點(diǎn).(1)求直線l的解析式;(2)求△AOB的面積;(3)點(diǎn)P是x軸上一點(diǎn),且滿足△ABP為等腰三角形,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).24.(8分)列方程解應(yīng)用題:從甲地到乙地有兩條公路,一輛私家車在高速公路上的平均速度比在普通公路上的平均速度高,行駛千米的高速公路比行駛同等長度的普通公路節(jié)約分鐘,求該汽車在高速公路上的平均速度.25.(10分)如圖,梯形ABCD中,AB//CD,AD=BC,延長AB到E,使BE=DC,連結(jié)AC、CE.求證AC=CE.26.(10分)在菱形ABCD中,∠ABC=60°,P是射線BD上一動點(diǎn),以AP為邊向右側(cè)作等邊△APE,連接CE.(1)如圖1,當(dāng)點(diǎn)P在菱形ABCD內(nèi)部時,則BP與CE的數(shù)量關(guān)系是,CE與AD的位置關(guān)系是.(2)如圖2,當(dāng)點(diǎn)P在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由;(3)如圖2,連接BE,若AB=2,BE=2,求AP的長.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】分析:根據(jù)最簡二次根式的概念逐項分析即可.詳解:A.=2,故不是最簡二次根式;B.=,故不是最簡二次根式;C.當(dāng)a≥0時,,故不是最簡二次根式;D.的被開方式既不含分母,又不含能開的盡的因式,故是最簡二次根式;故選D.點(diǎn)睛:本題考查了二次根式的識別,如果二次根式的被開放式中都不含分母,并且也都不含有能開的盡方的因式,像這樣的二次根式叫做最簡二次根式.2、B【解析】

根據(jù)勾股定理的逆定理對各選項進(jìn)行逐一判斷即可.【詳解】解:A、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本選項錯誤;B、∵AC2=22+32=13,BC2=12+12=2,AB2=22+32=13,∴△ABC不是直角三角形,故本選項正確;C、∵AB2=12+32=10,AC2=22+22=8,BC2=12+12=2,∴△ABC是直角三角形,故本選項錯誤;D、∵AC2=22+42=20,BC2=22=4,AB2=42=16,∴△ABC是直角三角形,故本選項錯誤.故選B.【點(diǎn)睛】本題考查勾股定理的逆定理,熟知如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形是解題關(guān)鍵.3、C【解析】

根據(jù)三角形的中位線定理可得OE=BC,由△OAE的周長為15可得AE+AO+EO=15,即可得AB+AC+BC=30,再由AC=12可得AB+BC=18,由此即可得?ABCD的周長.【詳解】∵AE=EB,AO=OC,∴OE=BC,∵AE+AO+EO=15,∴2AE+2AO+2OE=30,∴AB+AC+BC=30,∵AC=12,∴AB+BC=18,∴?ABCD的周長為18×2=1.故選C.【點(diǎn)睛】本題考查平行四邊形的性質(zhì)、三角形的中位線定理等知識,解題的關(guān)鍵是會靈活運(yùn)用所學(xué)知識解決問題.4、C【解析】分析:根據(jù)分式有意義的條件可得x﹣1≠0,再解不等式即可.詳解:由題意得:x﹣1≠0,解得:x≠1.故選C.點(diǎn)睛:本題主要考查了分式有意義的條件,關(guān)鍵是掌握分式有意義的條件是分母不等于零.5、C【解析】

解答本題的關(guān)鍵是記住多邊形內(nèi)角和公式為(n-2)×180°,任何多邊形的外角和是360度.外角和與多邊形的邊數(shù)無關(guān).【詳解】多邊形的內(nèi)角和可以表示成(n-2)?180°,外角和是固定的360°,從而可根據(jù)內(nèi)角和比他的外角和的3倍少180°列方程求解.

設(shè)所求n邊形邊數(shù)為n,

則(n-2)?180°=360°×3-180°,

解得n=7,

故選C.【點(diǎn)睛】本題主要考查了多邊形的內(nèi)角和與外角和,解答本題的關(guān)鍵是記住多邊形內(nèi)角和公式為(n-2)×180°.6、A【解析】

根據(jù)方差的意義先比較出甲、乙、丙、丁的大小,再根據(jù)平均數(shù)的意義即可求出答案.【詳解】∵S甲2=3.5,S乙2=3.5,S丙2=12.5,S丁2=15,∴S甲2=S乙2<S丙2<S丁2,∵甲=175,乙=173,∴甲=乙,∴從中選擇一名成績好又發(fā)揮穩(wěn)定的運(yùn)動員參加比賽,應(yīng)該選擇甲;故選A.7、A【解析】

根據(jù)自變量系數(shù)大于零列不等式求解即可.【詳解】由題意得a-2>0,∴a>2.故選A.【點(diǎn)睛】本題考查了一次函數(shù)的圖像與性質(zhì),對于一次函數(shù)y=kx+b(k為常數(shù),k≠0),當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小.8、A【解析】

根據(jù)三角形內(nèi)角和定理分別求出∠A、∠B、∠C,根據(jù)勾股定理、等腰三角形的概念判斷即可.【詳解】解:設(shè)∠A、∠B、∠C分別為x、x、2x,則x+x+2x=180°,解得,x=45°,∴∠A、∠B、∠C分別為45°、45°、90°,∴a2+b2=c2,A錯誤,符合題意,c2=2a2,B正確,不符合題意;a=b,C正確,不符合題意;∠C=90°,D正確,不符合題意;故選:A.【點(diǎn)睛】本題考查的是三角形內(nèi)角和定理、勾股定理,掌握三角形內(nèi)角和等于180°是解題的關(guān)鍵.9、B【解析】試題分析:根據(jù)二次根式的性質(zhì),,可知x-2≤0,即x≤2.故選B考點(diǎn):二次根式的性質(zhì)10、A【解析】

解:解不等式組可得,在這個范圍內(nèi)的最小整數(shù)為0,所以不等式組的最小整數(shù)解是0,故選A二、填空題(每小題3分,共24分)11、1.【解析】

根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半求出BC,再根據(jù)菱形的周長公式列式計算即可得解.【詳解】∵E、F分別是AB、AC的中點(diǎn),∴EF是△ABC的中位線,∴BC=2EF=2×3=6,∴菱形ABCD的周長=4BC=4×6=1.故答案為1.【點(diǎn)睛】本題主要考查了菱形的四條邊都相等,三角形的中位線平行于第三邊并且等于第三邊的一半,求出菱形的邊長是解題的關(guān)鍵.12、y=2x+1.【解析】由“上加下減”的原則可知,將函數(shù)y=2x的圖象向上平移1個單位所得函數(shù)的解析式為y=2x+1,故答案為y=2x+1.13、1.1,2,2.1.【解析】分析:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),一組數(shù)據(jù)中眾數(shù)不止一個,由此可得出a的值,將數(shù)據(jù)從小到大排列可得出中位數(shù).詳解:1,3,1,1,2,a的眾數(shù)是a,∴a=1或2或3或1,將數(shù)據(jù)從小到大排列分別為:1,1,1,2,3,1,1,1,2,2,3,1,1,1,2,3,3,1,1,1,2,3,1,1.故中位數(shù)分別為:1.1,2,2.1.故答案為:1.1,2,2.1.點(diǎn)睛:本題考查了眾數(shù)及中位數(shù)的知識,解答本題的關(guān)鍵是掌握眾數(shù)及中位數(shù)的定義,屬于基礎(chǔ)題.14、-2【解析】

由一次函數(shù)圖象與系數(shù)的關(guān)系可得出關(guān)于k的一元一次不等式組,解不等式組即可得出結(jié)論.【詳解】由已知得:,解得:-<k<2.∵k為整數(shù),∴k=-2.故答案為:-2.【點(diǎn)睛】本題考查了一次函數(shù)圖象與系數(shù)的關(guān)系,解題的關(guān)鍵是得出關(guān)于k的一元一次不等式組.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)一次函數(shù)圖象與系數(shù)的關(guān)系找出關(guān)于系數(shù)的不等式(或不等式組)是關(guān)鍵.15、3【解析】

根據(jù)分式值為0的條件:分子為0,分母不為0,即可得答案.【詳解】∵分式的值為零,∴x-3=0,x+5≠0,解得:x=3,故答案為:3【點(diǎn)睛】本題考查分式值為0的條件,要使分式值為0,則分子為0,分母不為0;熟練掌握分式值為0的條件是解題關(guān)鍵.16、【解析】

由在直角三角形中,30°角所對的邊是斜邊的一半得AC=2AB,再用運(yùn)用勾股定理,易得BC的值.或直接用三角函數(shù)的定義計算.【詳解】解:∵∠B=90°,∠C=30°,AB=2,

∴AC=2AB=4,

由勾股定理得:故答案為:.【點(diǎn)睛】本題考查了解直角三角形,要熟練掌握好邊角之間的關(guān)系、勾股定理及三角函數(shù)的定義.17、【解析】分析:根據(jù)最簡二次根式及同類二次根式的定義,令被開方數(shù)相等解方程.詳解:根據(jù)題意得,3a+1=2

解得,a=

故答案為.點(diǎn)睛:此題主要考查了最簡二次根式及同類二次根式的定義,正確理解同類二次根式的定義是解題的關(guān)鍵.18、B【解析】

根據(jù)平均數(shù)和方差的變化規(guī)律,即可得出答案.【詳解】∵數(shù)據(jù)x1+1,x1+1,,xn+1的平均數(shù)為17,∴x1+1,x1+1,,xn+1的平均數(shù)為18,∵數(shù)據(jù)x1+1,x1+1,,xn+1的方差為1,∴數(shù)據(jù)x1+1,x1+1,,xn+1的方差不變,還是1;故選B.【點(diǎn)睛】本題考查了方差與平均數(shù),用到的知識點(diǎn):如果一組數(shù)據(jù)x1,x1,,xn的平均數(shù)為,方差為S1,那么另一組數(shù)據(jù)ax1+b,ax1+b,,axn+b的平均數(shù)為a+b,方差為a1S1.三、解答題(共66分)19、(1)6;(2)y=-3x+10(1≤x<);(2)或32【解析】

(1)如下圖,利用等腰直角三角形DHC可得到HC的長度,從而得出HB的長,進(jìn)而得出AD的長;(2)如下圖,利用等腰直角三角形的性質(zhì),可得PQ、PR的長,然后利用EB=PQ+PR得去x、y的函數(shù)關(guān)系,最后根據(jù)圖形特點(diǎn)得出取值范圍;(3)存在2種情況,一種是點(diǎn)P在梯形內(nèi),一種是在梯形外,分別根y的值求出x的值,然后根據(jù)梯形面積求解即可.【詳解】(1)如下圖,過點(diǎn)D作BC的垂線,交BC于點(diǎn)H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四邊形ABCD是梯形,∠B=90°∴四邊形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下圖,過點(diǎn)P作EF的垂線,交EF于點(diǎn)Q,反向延長交BC于點(diǎn)R,DH與EF交于點(diǎn)G∵EF∥AD,∴EF∥BC∴∠EFP=∠C=45°∵EP⊥PF∴△EPF是等腰直角三角形同理,還可得△NPM和△DGF也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ⊥EF,∴PQ=QE=QF∴PQ=同理,PR=∵AB=8,∴EB=8-x∵EB=QR∴8-x=化簡得:y=-3x+10∵y>0,∴x<當(dāng)點(diǎn)N與點(diǎn)B重合時,x可取得最小值則BC=NM+MC=NM+EF=-3x+10+,解得x=1∴1≤x<(3)情況一:點(diǎn)P在梯形ABCD內(nèi),即(2)中的圖形∵M(jìn)N=2,即y=2,代入(2)中的關(guān)系式可得:x==AE∴情況二:點(diǎn)P在梯形ABCD外,圖形如下:與(2)相同,可得y=3x-10則當(dāng)y=2時,x=4,即AE=4∴【點(diǎn)睛】本題考查了等腰直角三角形、矩形的性質(zhì),難點(diǎn)在于第(2)問中確定x的取值范圍,需要一定的空間想象能力.20、(1)(2)【解析】本題考查了等邊三角形的性質(zhì)和勾股定理.①中,運(yùn)用等腰三角形的三線合一和勾股定理;②中,根據(jù)三角形的面積公式進(jìn)行計算即可.21、【解析】

利用正方形的面積公式先求出拼接后的正方形的邊長,觀察邊長可知是直角邊長分別為2和4的直角三角形的斜邊,由此可對圖形進(jìn)行分割,然后再進(jìn)行拼接即可.【詳解】因為20個小正方形的面積是20,所以拼接后的正方形的邊長=,22+42=20,所以如圖①所示進(jìn)行分割,拼接的正方形如圖②所示.【點(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計,正方形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用數(shù)形結(jié)合的思想解決問題.22、(1)詳見解析;(2)【解析】

(1)根據(jù)矩形的性質(zhì)和角平分線的性質(zhì)可得∠BEC=∠BCE,可得BE=BC,則△BEC是等腰三角形;(2)根據(jù)勾股定理可求BE的長,即可求BC的長.【詳解】解:(1)△BEC是等腰三角形,∵在矩形ABCD中,AD∥BC,∴∠DEC=∠BCE,∵EC平分∠BED,∴∠BEC=∠DEC,∴∠BEC=∠BCE,∴BE=BC,∴△BEC是等腰三角形(2)在矩形ABCD中,∠A=90°,且∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=AB=2,∴BE=由(1)知BC=BE,∴BC=【點(diǎn)睛】本題考查了矩形的性質(zhì),等腰三角形的性質(zhì),勾股定理,熟練運(yùn)用矩形的性質(zhì)是本題的關(guān)鍵.23、(1)y=﹣x+4;(2)8;(3)點(diǎn)P坐標(biāo)為(﹣4,0)或(4+4,0)或(4﹣4,0)或(0,0)【解析】

(1)直線過(2,2)和(0,4)兩點(diǎn),則待定系數(shù)法求解析式.(2)先求A點(diǎn)坐標(biāo),即可求△AOB的面積(3)分三類討論,可求點(diǎn)P的坐標(biāo)【詳解】解(1)設(shè)直線l的解析式y(tǒng)=kx+b∵直線過(2,2)和(0,4)∴解得:∴直線l的解析式y(tǒng)=﹣x+4(2)令y=0,則x=4∴A(4,0)∴S△AOB=×AO×BO=×4×4=8(3)∵OA=4,OB=4∴AB=4若AB=AP=4∴在點(diǎn)A左邊,OP=4﹣4,在點(diǎn)A右邊,OP=4+4∴點(diǎn)P坐標(biāo)(4+4,0),(4﹣4,0)若BP=BP=4∴P(﹣4,0)若AP=BP則點(diǎn)P在AB的垂直平分線上,∵△AOB是等腰直角三角形,∴AB的垂直平分線過點(diǎn)O∴點(diǎn)P坐標(biāo)(0,0)【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)解析式,等腰三角形的性質(zhì),關(guān)鍵是利用分類討論的思想解決問題.24、.【解析】

設(shè)普通公路上的平均速度為,根據(jù)題意列出方程求出x的值,即可計算該汽車在高速公路上的平均速度.【詳解】設(shè)普通公路上的平均速度為,解得,經(jīng)檢驗:是原分式方程的解,高速度公路上的平均速度為【點(diǎn)睛】本題考查了分式方程的實際應(yīng)用,掌握解分式方程的方法是解題的關(guān)鍵.25、證明見解析【解析】本題主要考查了等腰梯形的性質(zhì)及全等三角形的判定方法.根據(jù)等腰梯形的性質(zhì)利用SAS判定△ADC≌△CBE,從而得到AC=CE證明:在梯形ABCD中,AB∥DC,AD=BC,∴四邊形ABCD是等腰梯形,∴∠CDA=∠BCD.又∵DC∥AB,∴∠BCD=∠CBE,∵AD=BC,DC=BE,∴△ADC≌△CBE,故AC=CE.26、(1)BP=CE,CE⊥AD;(2)結(jié)論仍然成立,理由見解析;(3)2【解析】

(1)由菱形ABCD和∠ABC=60°可證△ABC與△ACD是等邊三角形,由等邊△APE可得AP=AE,∠PAE=∠BAC=60°,減去公共角∠PAC得∠BAP=∠CAE,根據(jù)SAS可證得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形對角線平分一組對角可證∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論