版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
安徽省安慶市區(qū)二十二校聯(lián)考2024屆數(shù)學八年級下冊期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在四邊形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,點H為垂足,設AB=x,AD=y(tǒng),則y關于x的函數(shù)關系用圖象大致可以表示為()A. B. C. D.2.如圖,在矩形ABCD中,對角線AC,BD交于點O,若∠COD=58°,則∠CAD的度數(shù)是()A.22° B.29° C.32 D.61°3.與-3A.6 B.-9 C.12 D.4.如圖:已知∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,則PD=()A.4 B.3C.2 D.15.矩形ABCD中,已知AB=5,AD=12,則AC長為()A.9 B.13 C.17 D.206.某儲運部緊急調(diào)撥一批物資,調(diào)進物資共用4小時,調(diào)進物資2小時后開始調(diào)出物資(調(diào)進物資與調(diào)出物資的速度均保持不變).儲運部庫存物資S(噸)與時間t(小時)之間的函數(shù)關系如圖所示,這批物資從開始調(diào)進到全部調(diào)出需要的時間是()A.4小時 B.4.4小時 C.4.8小時 D.5小時7.下列關于的方程中,有實數(shù)解的為()A. B.C. D.8.如圖,在△ABC中,AB的垂直平分線交BC于D,AC的中垂線交BC于E,∠BAC=112°,則∠DAE的度數(shù)為()A.68° B.56° C.44° D.24°9.菱形的對角線長分別為6和8,則該菱形的面積是()A.24 B.48 C.12 D.1010.如圖,在3×3的正方形網(wǎng)格中,以線段AB為對角線作平行四邊形,使另兩個頂點也在格點上,則這樣的平行四邊形最多可以畫()A.2個 B.3個 C.4個 D.5個二、填空題(每小題3分,共24分)11.如圖,正方形ABCD的邊長是18,點E是AB邊上的一個動點,點F是CD邊上一點,CF=8,連接EF,把正方形ABCD沿EF折疊,使點A,D分別落在點A',D'處,當點D'落在直線BC上時,線段AE12.如圖,在菱形ABCD中,AC、BD交于點O,AC=4,菱形ABCD的面積為4,E為AD的中點,則OE的長為___.13.如圖,四邊形是正方形,點在上,繞點順時針旋轉(zhuǎn)后能夠與重合,若,,試求的長是__________.14.反比例函數(shù)y=的圖像在其每一象限內(nèi),y隨x的增大而減小,則k的值可以是______.(寫出一個數(shù)值即可)15.反比例函數(shù)與一次函數(shù)的圖像的一個交點坐標是,則=________.16.如圖所示,矩形紙片ABCD中,AB=4cm,BC=8cm,現(xiàn)將其沿EF對折,使得點C與點A重合,則AF的長為_____.17.如圖,在矩形中,,過矩形的對角線交點作直線分別交、于點,連接,若是等腰三角形,則____.18.不透明的布袋里有2個黃球、3個紅球、5個白球,它們除顏色外其它都相同,那么從布袋中任意摸出一球恰好為紅球的概率是_____.三、解答題(共66分)19.(10分)如圖1,已知四邊形ABCD是正方形,對角線AC、BD相交于點E,以點E為頂點作正方形EFGH.(1)如圖1,點A、D分別在EH和EF上,連接BH、AF,直接寫出BH和AF的數(shù)量關系;(2)將正方形EFGH繞點E順時針方向旋轉(zhuǎn).①如圖2,判斷BH和AF的數(shù)量關系,并說明理由;②如果四邊形ABDH是平行四邊形,請在備用圖中補全圖形;如果四方形ABCD的邊長為,求正方形EFGH的邊長.20.(6分)如圖,四邊形ABCD為正方形.在邊AD上取一點E,連接BE,使∠AEB=60°.(1)利用尺規(guī)作圖(保留作圖痕跡):分別以點B、C為圓心,BC長為半徑作弧交正方形內(nèi)部于點T,連接BT并延長交邊AD于點E,則∠AEB=60°;(2)在前面的條件下,取BE中點M,過點M的直線分別交邊AB、CD于點P、Q.①當PQ⊥BE時,求證:BP=2AP;②當PQ=BE時,延長BE,CD交于N點,猜想NQ與MQ的數(shù)量關系,并說明理由.21.(6分)如圖,已知,在一條直線上,.求證:(1);(2)四邊形是平行四邊形.22.(8分)如圖,函數(shù)的圖象經(jīng)過,,其中,過點A作x軸的垂線,垂足為C,過點B作y軸的垂線,垂足為D,連結(jié)AD,DC,CB,AC與BD相交于點E.(1)若的面積為4,求點B的坐標;(2)四邊形ABCD能否成為平行四邊形,若能,求點B的坐標,若不能說明理由;(3)當時,求證:四邊形ABCD是等腰梯形.23.(8分)(1)因式分解:;(2)解分式方程:;(3)解不等式組:;24.(8分)已知點分別在菱形的邊上滑動(點不與重合),且.(1)如圖1,若,求證:;(2)如圖2,若與不垂直,(1)中的結(jié)論還成立嗎?若成立,請證明,若不成立,說明理由;(3)如圖3,若,請直接寫出四邊形的面積.25.(10分)解方程:=+1.26.(10分)如圖,在平面直角坐標系xOy中,A(0,5),直線x=-5與x軸交于點D,直線y=-x-與x軸及直線x=-5分別交于點C,E.點B,E關于x軸對稱,連接AB.(1)求點C,E的坐標及直線AB的解析式;(2)若S=S△CDE+S四邊形ABDO,求S的值;(3)在求(2)中S時,嘉琪有個想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積,如此不更快捷嗎?”但大家經(jīng)反復驗算,發(fā)現(xiàn)S△AOC≠S,請通過計算解釋他的想法錯在哪里.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】
因為DH垂直平分AC,∴DA=DC,AH=HC=2,∴∠DAC=∠DCH,∵CD∥AB,∴∠DCA=∠BAC,∴∠DAN=∠BAC,∵∠DHA=∠B=90°,∴△DAH∽△CAB,∴,∴,∴y=,∵AB<AC,∴x<4,∴圖象是D.故選D.2、B【解析】
只要證明OA=OD,根據(jù)三角形的外角的性質(zhì)即可解決問題.【詳解】∵四邊形ABCD是矩形,
∴OA=OD,
∴∠OAD=∠ODA,
∵∠COD=∠CAD+∠ODA=58°,
∴∠CAD=29°
故選B.【點睛】本題考查矩形的性質(zhì)、等腰三角形的判定和性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題.3、C【解析】
先對各個選項中的二次根式化簡為最簡二次根式(被開方數(shù)中不含分母且被開方數(shù)中不含有開得盡方的因數(shù)或因式),再在其中找-3的同類二次根式(化成最簡二次根式后的被開方數(shù)相同,這樣的二次根式叫做同類二次根式.)【詳解】A.6為最簡二次根式,且與-3B.-9=-3,與-C.12=23,與D.-15為最簡二次根式,且與-3故選C.【點睛】本題考查二次根式的加減,能將各個選項中根式化簡為最簡二次根式,并能找對同類二次根式是本題的關鍵.4、C【解析】
作PE⊥OB于E,根據(jù)角平分線的性質(zhì)可得PE=PD,根據(jù)平行線的性質(zhì)可得∠BCP=∠AOB=30°,由直角三角形中30°的角所對的直角邊等于斜邊的一半,可求得PE,即可求得PD.【詳解】作PE⊥OB于E,
∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
∴PE=PD,
∵PC∥OA,
∴∠BCP=∠AOB=2∠BOP=30°
∴在Rt△PCE中,PE=12PC=12×4=2,
故選【點睛】本題考查角平分線的性質(zhì)、含30度角的直角三角形和三角形的外角性質(zhì),解題的關鍵是掌握角平分線的性質(zhì)、含30度角的直角三角形和三角形的外角性質(zhì).5、B【解析】
由勾股定理可求出BD長,由矩形的性質(zhì)可得AC=BD=1.【詳解】如圖,矩形ABCD中,∠BAD=90°,AB=5,AD=12,∴1,∴AC=BD=1.故選B.【點睛】本題考查了矩形的性質(zhì),勾股定理,求出DB的長是解答本題的關鍵.6、B【解析】分析:由圖中可以看出,2小時調(diào)進物資30噸,調(diào)進物資共用4小時,說明物資一共有60噸;2小時后,調(diào)進物資和調(diào)出物資同時進行,4小時時,物資調(diào)進完畢,倉庫還剩10噸,說明調(diào)出速度為:(60-10)÷2噸,需要時間為:60÷25時,由此即可求出答案.解答:解:物資一共有60噸,調(diào)出速度為:(60-10)÷2=25噸,需要時間為:60÷25=2.4(時)∴這批物資從開始調(diào)進到全部調(diào)出需要的時間是:2+2.4=4.4小時.7、C【解析】
根據(jù)二次根式必須有意義,可以得到選項中的無理方程是否有解,從而可以解答本題.【詳解】,,即故無解.A錯誤;,又,,即故無解,B錯誤;,,即有解,C正確;,,,故無解.D錯誤;故選C.【點睛】此題考查無理方程,解題關鍵在于使得二次根式必須有意義.8、C【解析】
根據(jù)三角形內(nèi)角和定理求出∠B+∠C,根據(jù)線段垂直平分線的性質(zhì)得到DA=DB,得到∠DAB=∠B,同理可得,∠EAC=∠C,結(jié)合圖形計算,得到答案.【詳解】解:∠B+∠C=180°-∠BAC=68°,
∵AB的垂直平分線交BC于D,
∴DA=DB,
∴∠DAB=∠B,
∵AC的中垂線交BC于E,
∴EA=EC,
∴∠EAC=∠C,
∴∠DAE=∠BAC-(∠DAB+∠EAC)=112°-68°=44°,
故選:C.【點睛】本題考查的是線段的垂直平分線的性質(zhì)、三角形內(nèi)角和定理,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.9、A【解析】
由菱形的兩條對角線的長分別是6和8,根據(jù)菱形的面積等于對角線積的一半,即可求得答案.【詳解】解:∵菱形的兩條對角線的長分別是6和8,
∴這個菱形的面積是:×6×8=1.
故選:A.【點睛】此題考查了菱形的性質(zhì).菱形的面積等于對角線積的一半是解此題的關鍵.10、D【解析】
根據(jù)平行四邊形的判定方法即可解決問題.【詳解】在直線AB的左下方有5個格點,都可以成為平行四邊形的頂點,所以這樣的平行四邊形最多可以畫5個,故選D.【點睛】本題考查平行四邊形的判定,解題的關鍵是靈活運用所學知識解決問題.二、填空題(每小題3分,共24分)11、4或1【解析】
分兩種情況:①D′落在線段BC上,②D′落在線段BC延長線上,分別連接ED、ED′、DD′,利用折疊的性質(zhì)以及勾股定理,即可得到線段AE的長.【詳解】解:分兩種情況:①當D′落在線段BC上時,連接ED、ED′、DD′,如圖1所示:由折疊可得,D,D'關于EF對稱,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的邊長是18,∴AB=BC=CD=AD=18,∵CF=8,∴DF=D′F=CD?CF=10,∴CD′=D'F2-C∴BD'=BC?CD'=12,設AE=x,則BE=18?x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18?x)2+122,∴182+x2=(18?x)2+122,解得:x=4,即AE=4;②當D′落在線段BC延長線上時,連接ED、ED′、DD′,如圖2所示:由折疊可得,D,D'關于EF對稱,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的邊長是18,∴AB=BC=CD=AD=18,∵CF=8,∴DF=D′F=CD?CF=10,CD'=D'F2-C∴BD'=BC+CD'=24,設AE=x,則BE=18?x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18?x)2+242,∴182+x2=(18?x)2+242,解得:x=1,即AE=1;綜上所述,線段AE的長為4或1;故答案為:4或1.【點睛】本題考查了正方形的性質(zhì)、折疊變換的性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理等知識;熟練掌握折疊變換的性質(zhì),由勾股定理得出方程是解題的關鍵,注意分類討論.12、【解析】
由菱形的對角線互相平分且垂直可知菱形的面積等于小三角形面積的四倍可求出DO,根據(jù)勾股定理可求出AD,然后再根據(jù)直角三角形中斜邊的中線等于斜邊的一半,求解即可.【詳解】解:∵菱形ABCD的對角線AC、BD相交于點O,且AC=4,菱形ABCD的面積為4,∴AO=2,DO=,∠AOD=90°,∴AD=3,∵E為AD的中點,∴OE的長為:AD=.故答案為:.【點睛】菱形的對角線的性質(zhì)、勾股定理、直角三角形的性質(zhì)都是本題的考點,根據(jù)題意求出DO和AD的長是解題的關鍵.13、.【解析】
由正方形的性質(zhì)得出AB=AD=3,∠ABC=∠D=∠BAD=90°,由勾股定理求出AP,再由旋轉(zhuǎn)的性質(zhì)得出△ADP≌△ABP′,得出AP′=AP=,∠BAP′=∠DAP,證出△PAP′是等腰直角三角形,得出PP′=AP,即可得出結(jié)果.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD=3,DP=1,∠ABC=∠D=∠BAD=90°,∴AP=,∵△ADP旋轉(zhuǎn)后能夠與△ABP′重合,∴△ADP≌△ABP′,∴AP′=AP=,∠BAP′=∠DAP,∴∠PAP′=∠BAD=90°,∴△PAP′是等腰直角三角形,∴PP′=AP=;故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、勾股定理、全等三角形的性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形和旋轉(zhuǎn)的性質(zhì)是解決問題的關鍵.14、1【解析】∵反比例函數(shù)y=的圖象在每一象限內(nèi),y隨x的增大而減小,∴,解得.∴k可取的值很多,比如:k=1.15、-6【解析】
根據(jù)題意得到ab=2,b-a=3,代入原式計算即可.【詳解】∵反比例函數(shù)與一次函數(shù)y=x+3的圖象的一個交點坐標為(m,n),∴b=,b=a+3,∴ab=2,b-a=3,∴==2×(-3)=-6,故答案為:-6【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,解題關鍵在于得到ab=2,b-a=316、5cm【解析】
設AF=xcm,則DF=(8﹣x)cm,由折疊的性質(zhì)可得DF=D′F,在Rt△AD′F中,由勾股定理可得x2=42+(8﹣x)2,解方程求的x的值,即可得AF的長.【詳解】設AF=xcm,則DF=(8﹣x)cm,∵矩形紙片ABCD中,AB=4cm,BC=8cm,現(xiàn)將其沿EF對折,使得點C與點A重合,∴DF=D′F,在Rt△AD′F中,∵AF2=AD′2+D′F2,∴x2=42+(8﹣x)2,解得:x=5(cm).故答案為:5cm【點睛】本題考查了矩形的折疊問題,利用勾股定理列出方程x2=42+(8﹣x)2是解決問題的關鍵.17、或【解析】
連接AC,由矩形的性質(zhì)得出∠B=90°,AD=BC=6,OA=OC,AD∥BC,由ASA證明△AOE≌△COF,得出AE=CF,若△AEF是等腰三角形,分三種情討論:①當AE=AF時,設AE=AF=CF=x,則BF=6-x,在Rt△ABF中,由勾股定理得出方程,解方程即可;②當AF=EF時,作FG⊥AE于G,則AG=AE=BF,設AE=CF=x,則BF=6-x,AG=x,得出方程x=6-x,解方程即可;③當AE=FE時,作EH⊥BC于H,設AE=FE=CF=x,則BF=6-x,CH=DE=6-x,求出FH=CF-CH=2x-6,在Rt△EFH中,由勾股定理得出方程,方程無解;即可得出答案.【詳解】解:連接AC,如圖1所示:∵四邊形ABCD是矩形,∴∠B=90°,AD=BC=6,OA=OC,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,若△AEF是等腰三角形,分三種情討論:①當AE=AF時,如圖1所示:設AE=AF=CF=x,則BF=6-x,在Rt△ABF中,由勾股定理得:12+(6-x)2=x2,解得:x=,即AE=;②當AF=EF時,作FG⊥AE于G,如圖2所示:則AG=AE=BF,設AE=CF=x,則BF=6-x,AG=x,所以x=6-x,解得:x=1;③當AE=FE時,作EH⊥BC于H,如圖3所示:設AE=FE=CF=x,則BF=6-x,CH=DE=6-x,∴FH=CF-CH=x-(6-x)=2x-6,在Rt△EFH中,由勾股定理得:12+(2x-6)2=x2,整理得:3x2-21x+52=0,∵△=(-21)2-1×3×52<0,∴此方程無解;綜上所述:△AEF是等腰三角形,則AE為或1;故答案為:或1.【點睛】本題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、解方程、等腰三角形的性質(zhì)、分類討論等知識;根據(jù)勾股定理得出方程是解決問題的關鍵,注意分類討論.18、【解析】
∵在不透明的袋中裝有2個黃球、3個紅球、5個白球,它們除顏色外其它都相同,∴從這不透明的袋里隨機摸出一個球,所摸到的球恰好為紅球的概率是:.考點:概率公式.三、解答題(共66分)19、(1)見解析;(2)①BH=AF,理由見解析,②正方形EFGH的邊長為.【解析】
(1)根據(jù)正方形的對角線互相垂直平分可得AE=BE,∠BEH=∠AEF=90°,然后利用“邊角邊”證明△BEH和△AEF全等,根據(jù)全等三角形對應邊相等即可得證;
(2)①連接EG,根據(jù)正方形的性質(zhì)得到AE=BE,∠BEA=90°,EF=EH,∠HEF=90°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
②如備用圖,根據(jù)平行四邊形的性質(zhì)得到AH∥BD,AH=BD,于是得到∠EAH=∠AEB=90°,根據(jù)勾股定理即可得到結(jié)論;【詳解】(1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,∵四邊形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,∴△BEH≌△AEF(SAS),∴BH=AF;(2)①BH=AF,理由:連接EG,∵四邊形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四邊形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH與△AEF中,,∴△BEH≌△AEF,∴BH=AF;②如備用圖,∵四邊形ABDH是平行四邊形,∴AH∥BD,AH=BD,∴∠EAH=∠AEB=90°,∵四方形ABCD的邊長為,∴AE=BE=CE=DE=1,∴EH===,∴正方形EFGH的邊長為.【點睛】本題考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,正確作出圖形是解題的關鍵.20、(1)見解析;(2)①見解析;②NQ=2MQ或NQ=MQ.理由見解析【解析】
(1)分別以點B、C為圓心,BC長為半徑作弧交正方形內(nèi)部于點T,連接BT并延長交邊AD于點E;(2)①連接PE,先證明PQ垂直平分BE.得到PB=PE,再證明∠APE=60°,得到∠AEP=30°,利用在直角三角形中,30°所對的直角邊等于斜邊的一半,即可解答;②NQ=2MQ或NQ=MQ,分兩種情況討論,作出輔助線,證明△ABE≌△FQP,即可解答.【詳解】(1)解:如圖1,分別以點B、C為圓心,BC長為半徑作弧交正方形內(nèi)部于點T,連接BT并延長交邊AD于點E;(2)①證明:連接PE,如圖2,∵點M是BE的中點,PQ⊥BE,∴PQ垂直平分BE.∴PB=PE,∴∠PEB=∠PBE=90°﹣∠AEB=90°﹣60°=30°,∴∠APE=∠PBE+∠PEB=60°,∴∠AEP=90°∠APE=90°﹣60°=30°,∴BP=EP=2AP.②NQ=2MQ或NQ=MQ.理由如下:分兩種情況:如圖3所示,過點Q作QF⊥AB于點F交BC于點G,則FQ=CB.∵正方形ABCD中,AB=BC,∴FQ=AB.在Rt△ABE和Rt△FQP中,,∴Rt△ABE≌Rt△FQP(HL).∴∠FQP=∠ABE=30°.又∵∠MGQ=∠AEB=60°,∴∠GMQ=90°,∵CD∥AB.∴∠N=∠ABE=30°.∴NQ=2MQ,如圖4所示,過點Q作QF⊥AB于點F交BC于點G,則QF=CB.同理可證:△ABE≌△FQP.此時∠FPQ=∠AEB=60°.又∵∠FPQ=∠ABE+∠PMB,∠N=∠ABE=30°.∴∠EMQ=∠PMB=30°.∴∠N=∠EMQ,∴NQ=MQ.【點睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、全等三角形的性質(zhì)與判定、尺規(guī)作圖、含30°角的直角三角形的性質(zhì)、線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)等知識;本題綜合性強,解決本題的關鍵是作出輔助線,證明三角形全等.21、(1)詳見解析;(2)詳見解析.【解析】
(1)由題意由“HL”可判定Rt△ABC≌Rt△EDF(2)根據(jù)一組對邊平行且相等的四邊形是平行四邊形,可證四邊形BCDF是平行四邊形.【詳解】證明:(1)∵AF=EC∴AC=EF又∵BC=DF,∴Rt△ABC≌Rt△EDF(2)∵Rt△ABC≌Rt△EDF∴BC=DF,∠ACB=∠DFE∴∠BCF=∠DFC∴BC∥DF,BC=DF∴四邊形BCDF是平行四邊形【點睛】本題考查了平行四邊形的判定與性質(zhì),全等三角形的判定與性質(zhì),關鍵是靈活運用性質(zhì)和判定解決問題.22、(1);(2)能,;(3)詳見解析.【解析】
(1)將A的坐標代入反比例解析式中求出k的值,確定出反比例解析式,將B的坐標代入反比例解析式中,求出mn的值,三角形ABD的面積由BD為底邊,AE為高,利用三角形面積公式來求,由B的坐標得到BD=m,由AC-EC表示出AE,由已知的面積,利用面積公式列出關系式,將mn的值代入,求出m的值,進而確定出n的值,即可得到B的坐標;(2)假設四邊形ABCD為平行四邊形,利用平行四邊形的性質(zhì)得到BD與AC互相平分,得到E為AC的中點,E為BD的中點,由A的坐標求出E的坐標,進而確定出B的坐標,將B坐標代入反比例解析式檢驗,B在反比例圖象上,故假設正確,四邊形ABCD能為平行四邊形;(3)由由AC=BD,得到A的縱坐標與B的橫坐標相等,確定出B的橫坐標,將B橫坐標代入反比例解析式中求出B的縱坐標,得到B的坐標,進而確定出E的坐標,得到DE=CE=1,由AC=BD,利用等式的性質(zhì)得到AE=BE,進而得到兩對對應邊成比例,且由對頂角相等得到夾角相等,利用兩邊對應成比例且夾角相等的兩三角形相似,得到三角形DEC與三角形AEB相似,由相似三角形的對應角相等得到一對內(nèi)錯角相等,利用內(nèi)錯角相等兩直線平行得到CD與AB平行,而在直角三角形ADE與直角三角形BEC中,DE=EC,AE=BE,利用勾股定理得到AD=BC,且AD與BC不平行,可得出四邊形ABCD為等腰梯形.【詳解】解:(1);(2)若ABCD是平行四邊形,則AC,BD互相平分,∵,∴,將代入反比例中,;∴B在上,則四邊形ABCD能成為平行四邊形;(3)∵,,;∴∵軸,軸,∴∴∵∴∴∴∴∴根據(jù)勾股定理,.∵AD與BC不平行∴則四邊形ABCD是等腰梯形.【點睛】本題考查反比例函數(shù)綜合題,熟練掌握計算法則是解題關鍵.23、(1);(2);(3).【解析】
(1)先用平方差公式分解,再用完全平方公式分解;(2)根據(jù)解分式方程的方法求解即可,并注意檢驗;(3)先解不等式組中的每一個不等式,再取其解集的公共部分即可.【詳解】解:(1)==(2)方程兩邊同時乘以(x-3),得解得:經(jīng)檢驗,是原方程的根.所以,原方程的根是.(3),解不等式①,得x<2,解不等式②,得x≥-1,∴不等式組的解集是.【點睛】本題考查了多項式的因式分解、分式方程的解法和一元一次不等式組的解法,屬于基礎題型,熟練掌握分解因式的方法、分式方程和一元一次不等式組的解法是解題的關鍵.24、(1)證明見解析;(2)(1)中的結(jié)論還成立,證明見解析;(3)四邊形的面積為.【解析】
(1)根據(jù)菱形的性質(zhì)及已知,得到,再證,根據(jù)三角形全等的性質(zhì)即可得到結(jié)論;(2)作,垂足分別為點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廠房電氣系統(tǒng)升級改造合同范本4篇
- 2024新版二手房定金支付合同樣本版
- 二零二五年度新材料研發(fā)承包生產(chǎn)合同3篇
- 二零二四屬公積金貸款合同簽訂后的貸后審計與合規(guī)性檢查3篇
- 2024預定房屋買賣協(xié)議書
- 個人農(nóng)田租賃承包協(xié)議:2024年標準范本一
- 2024年04月江西九江銀行萍鄉(xiāng)分行社會招考筆試歷年參考題庫附帶答案詳解
- 2024年04月四川興業(yè)銀行瀘州分行招考筆試歷年參考題庫附帶答案詳解
- 2024版有限責任公司發(fā)起人協(xié)議書
- 2024年03月浙江中國工商銀行浙江平湖工銀村鎮(zhèn)銀行春季校園招考筆試歷年參考題庫附帶答案詳解
- 2024-2030年中國通航飛行服務站(FSS)行業(yè)發(fā)展模式規(guī)劃分析報告
- 機械制造企業(yè)風險分級管控手冊
- 地系梁工程施工方案
- 藏文基礎-教你輕輕松松學藏語(西藏大學)知到智慧樹章節(jié)答案
- 2024電子商務平臺用戶隱私保護協(xié)議3篇
- 安徽省蕪湖市2023-2024學年高一上學期期末考試 英語 含答案
- 電力工程施工安全風險評估與防控
- 醫(yī)學教程 常見體表腫瘤與腫塊課件
- 內(nèi)分泌系統(tǒng)異常與虛勞病關系
- 智聯(lián)招聘在線測評題
- DB3418T 008-2019 宣紙潤墨性感官評判方法
評論
0/150
提交評論