版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省達(dá)州市渠縣中學(xué)2023-2024學(xué)年九年級(jí)上學(xué)期入學(xué)數(shù)學(xué)試
卷(解析版)
一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有
一項(xiàng)是符合題目要求的)
1.(4分)-2的絕對(duì)值是()
A.2B.-2C..1D.-丄
22
2.(4分)下列電視臺(tái)標(biāo)志中,是中心對(duì)稱圖形的是()
3.(4分)為有效防控新冠疫情,國家大力倡導(dǎo)全國人民免費(fèi)接種疫苗.截止至2022年5
月底,我國疫苗接種髙達(dá)339000萬劑次.數(shù)據(jù)339000萬用科學(xué)記數(shù)法可表示為“X1()9
的形式,則a的值是()
A.0.339B.3.39C.33.9D.339
4.(4分)若分式1X丨-1的值為0,則x的值為()
x+1
A.1B.-1C.±1D.無解
5.(4分)下列命題為假命題的是()
A.對(duì)角線相等的平行四邊形是矩形
B.對(duì)角線互相垂直的平行四邊形是菱形
C.有一個(gè)內(nèi)角是直角的平行四邊形是正方形
D.有一組鄰邊相等的矩形是正方形
6.(4分)已知x+y=遅,孫=戈,則的值為()
A.2爲(wèi)B(tài).9C.3&D.6
7.(4分)疫情無情人有情,愛心捐款傳真情,新型冠狀病毒感染的肺炎疫情期間,該班20
名學(xué)生的捐款統(tǒng)計(jì)情況如表:
金額/元5102050100
人數(shù)23663
則他們捐款金額的中位數(shù)是()
A.35B.20C.15D.10
8.(4分)如圖,函數(shù)yi=-2x與”=奴+3的圖象相交于點(diǎn)A(nn2),則關(guān)于x的不等式
ax+3>-2x>0的解集是()
9.(4分)如圖,在正方形ABC。中,E,尸分別為AO,尸為對(duì)角線BZ)上的一個(gè)動(dòng)點(diǎn),則
下列線段的長(zhǎng)等于AP+EP最小值的是()
A.ABB.DEC.BDD.AF
10.(4分)“愛勞動(dòng),勞動(dòng)美甲、乙兩同學(xué)同時(shí)從家里出發(fā),分別到距家6km和Wkm
的實(shí)踐基地參加勞動(dòng).若甲、乙的速度比是3:4,求甲、乙的速度.設(shè)甲的速度為
則依題意可列方程為()
A.且+丄=亜B.-§_+20=也
3x34x3x4x
C.且-蛇=丄D._L-也=20
3x4x33x4x
11.(4分)平面直角坐標(biāo)系xO),中,線段A8的兩個(gè)端點(diǎn)坐標(biāo)分別為A(-1,1),8(1,2),
平移線段AB(3,-1),則另一端點(diǎn)的坐標(biāo)()
A.(1,-2)B.(5,0)
C.(1,-2)或(5,0)D.(-5,0)或(1,-2)
12.(4分)如圖,在等邊△PQB中,點(diǎn)A為P。上一動(dòng)點(diǎn)(不與尸,。重合),連接PC.有
以下結(jié)論:①PB平分/ABC;?AQ=CP;?PB=PA+PC;⑤當(dāng)2C丄BQ時(shí)()
A.①②③B.②③④C.③④⑤D.②③④⑤
二、填空題(每小題4分,滿分20分)
13.(4分)已知|a+6|+、/2b-3=0,貝IJ2人+a的值是.
14.(4分)如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心丄4B的長(zhǎng)為半徑作圓弧,兩弧相
2
交于點(diǎn)M和點(diǎn)N,連接AD若AC=8,BC=15.
15.(4分)若實(shí)數(shù)a、b分別滿足J_4a+3=0,廿一43+3=0,且aWb,則丄+丄的值
ab
為.
16.(4分)已知關(guān)于x的分式方程丄的解是非負(fù)數(shù),則m的取值范圍
x-ll-x
是.
17.(4分)如圖,點(diǎn)尸是等邊三角形ABC內(nèi)的一點(diǎn),且出=2,PC=2.5,則NAP8的度
數(shù)為.
三、解答題(本大題共9個(gè)小題,共82分.解答應(yīng)寫出必要的文字說明、證明過程或演算步
驟)
18.(8分)⑴計(jì)算:V18-(2022-n)°+(-1)2023+(-y)-2;
(2)解方程:/+4x+2=0.
19.(8分)先化簡(jiǎn),再求值:(Wx+4-j)4-——任?——,其中&〃加
x2_]x-1x2-2x+l
20.(8分)如圖,折疊矩形的一邊AO,使點(diǎn)。落在邊5c的點(diǎn)尸處,BC=l5cm,求:
(1)線段8F的長(zhǎng);
(2)線段EC的長(zhǎng).
21.(8分)如圖,ZVIBC三個(gè)頂點(diǎn)坐標(biāo)分別為A(I,1),B(4,2),C(3,4).
(1)請(qǐng)畫出△ABC關(guān)于原點(diǎn)。成中心對(duì)稱的圖形山iCi,并寫出點(diǎn)A”Bi,。的坐
標(biāo);
(2)在x軸上找一點(diǎn)P,使得%+PB的值最小,直接寫出點(diǎn)P的坐標(biāo).
22.(10分)壽寧“金絲粉扣”是地方名優(yōu)特產(chǎn),深受消費(fèi)者喜愛.某超市購進(jìn)一批“金絲
粉扣”,進(jìn)價(jià)為每千克24元.調(diào)查發(fā)現(xiàn),平均每天能售出20千克,而當(dāng)銷售單價(jià)每降價(jià)
1元時(shí)
(1)設(shè)每千克降價(jià)x元,用含x的代數(shù)式表示實(shí)際銷售單價(jià)和銷售數(shù)量;
(2)若超市要使這種“金絲粉扣”的銷售利潤(rùn)每天達(dá)到330元,且讓顧客得到實(shí)惠,則
每千克應(yīng)降價(jià)多少元?
23.(10分)如圖所示,。是等邊三角形ABC外一點(diǎn),DB=DC,點(diǎn)E,尸分別在AB
(1)求證:AD是BC的垂直平分線.
(2)若ED平分NBEF,求證:FD平分NEFC.
(3)在(2)的條件下,求/瓦加的度數(shù).
24.(10分)對(duì)/〃、〃定義一種新運(yùn)算“※”,規(guī)定:加※〃=。,〃-加+5(a.6均為非零常數(shù)),
等式右邊的運(yùn)算是通常的四則運(yùn)算,3派(-1)=10.
(1)求人人的值;
(2)若關(guān)于x的不等式組[,冬&x-3)<9有且只有一個(gè)整數(shù)解,試求字母t的取值范
3xX(-6)<t
圍.
25.(10分)閱讀下面的材料,并回答后面的問題.
對(duì)于任意一個(gè)正的兩位數(shù),如果滿足其個(gè)位上的數(shù)字與十位上的數(shù)字互不相同,且都不
為零,我們把這個(gè)新兩位數(shù)與原兩位數(shù)的和與11的商記為了(4).例如:?=12,這個(gè)新
兩位數(shù)與原兩位數(shù)的和為21+12=33,因?yàn)?3+11=3(12)=3.
(1)求:(62)的值;
(2)若“互異數(shù)”b滿足/"(〃)=6,求出所有“互異數(shù)”人的值;
(3)如果根,〃都是"互異數(shù)”,且相+〃=100(w)+f(n)的值.
26.(10分)(1)在菱形ABCC中,ZA=60°,AD=4.
①如圖1,點(diǎn)E,點(diǎn)F分別是A3,求證:AAEDmABFD;
②如圖2,/以卯=60°,點(diǎn)E,邊BC上,求四邊形EDF3的面積;
(2)如圖3,在菱形A8CD中,乙4=/瓦)尸=45°,點(diǎn)尸分別在邊A8,邊8c上,求
四邊形EDFB的面積.
圖1圖2圖3
參考答案與試題解析
一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有
一項(xiàng)是符合題目要求的)
1.(4分)-2的絕對(duì)值是()
A.2B.-2C.丄D.-丄
22
【分析】根據(jù)負(fù)數(shù)的絕對(duì)值等于它的相反數(shù)解答.
【解答】解:-2的絕對(duì)值是2,
即|-3|=2.
故選:A.
【點(diǎn)評(píng)】本題考查了絕對(duì)值的性質(zhì):正數(shù)的絕對(duì)值是它本身;負(fù)數(shù)的絕對(duì)值是它的相反
數(shù);。的絕對(duì)值是0.
2.(4分)下列電視臺(tái)標(biāo)志中,是中心對(duì)稱圖形的是()
【分析】根據(jù)中心對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.
【解答】解:A、不是中心對(duì)稱圖形;
B、是中心對(duì)稱圖形;
C、不是中心對(duì)稱圖形;
。、不是中心對(duì)稱圖形.
故選:B.
【點(diǎn)評(píng)】本題考查了中心對(duì)稱圖形的概念,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180
度后兩部分重合.
3.(4分)為有效防控新冠疫情,國家大力倡導(dǎo)全國人民免費(fèi)接種疫苗.截止至2022年5
月底,我國疫苗接種高達(dá)339000萬劑次.數(shù)據(jù)339000萬用科學(xué)記數(shù)法可表示為aX1()9
的形式,則?的值是()
A.0.339B.3.39C.33.9D.339
【分析】科學(xué)記數(shù)法的表示形式為“X10”的形式,其中l(wèi)W|a|<10,〃為整數(shù).確定n
的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,〃的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相
同.當(dāng)原數(shù)絕對(duì)值210時(shí),〃是正整數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí).,〃是負(fù)整數(shù).
【解答】解:339000萬=3390000000=3.39X109,
**?tz8.39,
故選:B.
【點(diǎn)評(píng)】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為aX10"的形式,其
中l(wèi)W|a|<10,〃為整數(shù),表示時(shí)關(guān)鍵要正確確定。的值以及〃的值.
4.(4分)若分式1X丨-1的值為0,則*的值為()
x+1
A.1B.-1C.±1D.無解
【分析】直接利用分式的值為0,則分子為0,分母不能為0,進(jìn)而得出答案.
【解答】解:???分式相Li的值為4,
x+1
AM-1=0,且x+5¥0,
解得:x=l.
故選:A.
【點(diǎn)評(píng)】此題主要考查了分式的值為零的條件,正確把握定義是解題關(guān)鍵.
5.(4分)下列命題為假命題的是()
A.對(duì)角線相等的平行四邊形是矩形
B.對(duì)角線互相垂直的平行四邊形是菱形
C.有一個(gè)內(nèi)角是直角的平行四邊形是正方形
D.有一組鄰邊相等的矩形是正方形
【分析】根據(jù)矩形、菱形、正方形的判定逐項(xiàng)判斷即可.
【解答】解:對(duì)角線相等的平行四邊形是矩形,故A是真命題;
對(duì)角線互相垂直的平行四邊形是菱形,故8是真命題;
有一個(gè)內(nèi)角是直角的平行四邊形是矩形,故C是假命題;
有一組鄰邊相等的矩形是正方形,故。是真命題;
故選:C.
【點(diǎn)評(píng)】本題考查命題與定理,解題的關(guān)鍵是掌握矩形、菱形、正方形的判定定理.
6.(4分)已知m,則fy+孫2的值為()
A.2百B.9C.3&D.6
【分析】把所求式子利用提公因式法因式分解后,再把x+y=依,孫=、后代入計(jì)算即可.
【解答】解:,-'x+y=-\f3<xy=-j"^,
二/尹靖=“(x+y)=遍X?=3點(diǎn).
故選:C.
【點(diǎn)評(píng)】本題主要考查了提公因式法因式分解,熟練掌握提公因式法因式分解是解答本
題的關(guān)鍵.
7.(4分)疫情無情人有情,愛心捐款傳真情,新型冠狀病毒感染的肺炎疫情期間,該班20
名學(xué)生的捐款統(tǒng)計(jì)情況如表:
金額阮5102050100
人數(shù)23663
則他們捐款金額的中位數(shù)是()
A.35B.20C.15D.10
【分析】中位數(shù)是把20個(gè)數(shù)據(jù)從小到大排列,最中間的兩個(gè)數(shù)的平均數(shù).
【解答】解:把20名同學(xué)捐款從小到大排列,最中間的兩個(gè)數(shù)即為第10個(gè)和第11個(gè)數(shù)
分別是20,所以中位數(shù)是20.
故選:B.
【點(diǎn)評(píng)】本題主要考查了中位數(shù)的知識(shí),將一組數(shù)據(jù)從小到大排列,若為奇數(shù)個(gè)數(shù)據(jù),
中間數(shù)是中位數(shù),偶數(shù)個(gè)數(shù)據(jù),則取中間兩個(gè)數(shù)的平均數(shù)是中位數(shù),牢固掌握中位數(shù)定
義是解題關(guān)鍵.
8.(4分)如圖,函數(shù)川=-2%與”=or+3的圖象相交于點(diǎn)ACm,2),則關(guān)于x的不等式
or+3>-2t>0的解集是()
A.x>-\B.-l<x<0C.x<-1D.x>2
【分析】直接利用一次函數(shù)的性質(zhì)得出機(jī)的值,再利用函數(shù)圖象得出不等式or+3>-2x
>0的解集.
【解答】解:函數(shù)yi=-2x與竺=如+3的圖象相交于點(diǎn)A(m,2),
/.5=-2m,
解得:機(jī)=-1,
關(guān)于x的不等式ax+l>-2x>0的解集是:-6<x<0.
故選:B.
【點(diǎn)評(píng)】此題主要考查了一次函數(shù)與一元一次不等式,關(guān)鍵是求出機(jī)的值.
9.(4分)如圖,在正方形ABCQ中,E,F分別為A。,P為對(duì)角線8。上的一個(gè)動(dòng)點(diǎn),則
下列線段的長(zhǎng)等于AP+EP最小值的是()
A.ABB.DEC.BDD.AF
【分析】連接CR當(dāng)點(diǎn)E,P,C在同一直線上時(shí),AP+PE的最小值為CE長(zhǎng),依據(jù)△
ABF纟ACDE,即可得到AP+EP最小值等于線段AF的長(zhǎng).
【解答】解:如圖,連接CP,
由AO=C。,NAOP=/C。尸=45°,可得△AOP絲△(:£>「,
:.AP=CP,
:.AP+PE=CP+PE,
二當(dāng)點(diǎn)E,P,C在同一直線上時(shí),
此時(shí),由AB=C£),BF=DE,
:.AF=CE,
.-.AP+EP最小值等于線段AF的長(zhǎng),
故選:D.
ED
B
【點(diǎn)評(píng)】本題考查的是軸對(duì)稱,最短路線問題,根據(jù)題意作出A關(guān)于8。的對(duì)稱點(diǎn)C是
解答此題的關(guān)鍵.
10.(4分)“愛勞動(dòng),勞動(dòng)美甲、乙兩同學(xué)同時(shí)從家里出發(fā),分別到距家6km和\Qhn
的實(shí)踐基地參加勞動(dòng).若甲、乙的速度比是3:4,求甲、乙的速度.設(shè)甲的速度為3Hm/6,
則依題意可列方程為()
A._§_+工=也B.-§-+20=12.
3x34x3x4x
C._§_-12=丄D._§_-衛(wèi)=20
3x4x33x4x
【分析】根據(jù)甲、乙的速度比是3:4,可以設(shè)出甲和乙的速度,然后根據(jù)甲比乙提前20加〃
到達(dá)基地,可以列出相應(yīng)的方程.
【解答】解:由題意可知,甲的速度為次奶防,
_L+20=10;
5x604x
即_L+2=亜,
3x36x
故選:A.
【點(diǎn)評(píng)】本題考查由實(shí)際問題抽象出分式方程,解答本題的關(guān)鍵是明確題意,列出相應(yīng)
的分式方程.
11.(4分)平面直角坐標(biāo)系xOy中,線段AB的兩個(gè)端點(diǎn)坐標(biāo)分別為A(-1,1),BC1,2),
平移線段AB(3,-1),則另一端點(diǎn)的坐標(biāo)()
A.(1,-2)B.(5,0)
C.(1,-2)或(5,0)D.(-5,0)或(1,-2)
【分析】分兩種情形,利用平移的規(guī)律求解即可.
【解答】解:當(dāng)A(-1,1)的對(duì)應(yīng)點(diǎn)為(6,B(1,0),
當(dāng)B(7,2)的對(duì)應(yīng)點(diǎn)為(3,A(-3,-2),
故選:C.
【點(diǎn)評(píng)】本題考查坐標(biāo)與圖形變化-平移,解題的關(guān)鍵是掌握平移變換的性質(zhì),屬于中
考??碱}型.
12.(4分)如圖,在等邊△PQB中,點(diǎn)A為PQ上一動(dòng)點(diǎn)(不與尸,。重合),連接尸C.有
以下結(jié)論:①PB平分/ABC;?AQ=CP;?PB^PA+PC;⑤當(dāng)BC丄BQ時(shí)()
A.①②③B.②③④C.③④⑤D.②③④⑤
【分析】根據(jù)點(diǎn)A為PQ上一動(dòng)點(diǎn)(不與尸,。重合),ZABC=60°,可知NA8P與/
PCQ不一定相等,可判斷①;證明出△。。4絲△P8C(SAS),可得尸C〃Q8,PB=PQ=
PA+AQ=PA+PC,即可判斷出②③④,根據(jù)垂線段最短可知,當(dāng)A4丄PQ時(shí),AB最小,
即可判斷⑤.
【解答】解:?.,點(diǎn)A為尸。上一動(dòng)點(diǎn)(不與P,。重合),
.?.N4BP與NPCQ不一定相等,故①不正確;
,:4PQB和448。都為等邊三角形,
:.PQ=QB=PB,AB=CB=AC,
:.ZQBA+ZABP=ZPBC+ZABP=60a,
:.NQBA=NPBC,
.?.△QBA絲△PBC(SAS),
:.AQ=PC,NQ=NBPC=NQBP=60°,
:.PC〃QB,PB=PQ=PA+AQ^PA+PC,
.?.②③④都正確,
根據(jù)垂線段最短可知,當(dāng)8A丄PQ時(shí),
當(dāng)BC1BQ時(shí),△ABC的周長(zhǎng)最小.
故選:D.
【點(diǎn)評(píng)】本題考查了等邊三角形的性質(zhì),全等三角形的判定與性質(zhì)和最短路線問題,判
斷出△QB4纟△P8C是解本題的關(guān)鍵.
二、填空題(每小題4分,滿分20分)
13.(4分)已知<+6|+42b-3=0,則26+。的值是_3_.
—2-
【分析】根據(jù)非負(fù)數(shù)的性質(zhì)列方程求出。、6的值,然后代入代數(shù)式進(jìn)行計(jì)算即可得解.
【解答】解:由題意得,a+b=Q,
解得a=--,b=—,
72
所以,8/4=2x33)=3..
322
故答案為:3.
7
【點(diǎn)評(píng)】本題考查了非負(fù)數(shù)的性質(zhì):幾個(gè)非負(fù)數(shù)的和為o時(shí),這幾個(gè)非負(fù)數(shù)都為0.
14.(4分)如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心丄48的長(zhǎng)為半徑作圓弧,兩弧相
2
交于點(diǎn)M和點(diǎn)M連接4D若AC=8,8c=1523.
【分析】根據(jù)作圖過程可得MN是線段A8的垂直平分線,得AO=BD,進(jìn)而可得△AC。
的周長(zhǎng).
【解答】解:根據(jù)作圖過程可知:
MN是線段AB的垂直平分線,
:.AD=BD,
:./\ACD的周長(zhǎng)為:AC+CD+AD=AC+CD+BD=AC+BC=S+\5=23.
故答案為:23.
【點(diǎn)評(píng)】本題考查了作圖-基本作圖、線段垂直平分線的性質(zhì),解決本題的關(guān)鍵是掌握
線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等.
15.(4分)若實(shí)數(shù)〃、b分別滿足“2-4“+3=0,y-40+3=0,且a^b,則丄+丄的值為
ab
京一.
【分析】由實(shí)數(shù)。、〃分別滿足J-44+3=0,廿-46+3=0,且aWb,知〃、/?可看作方
程7-4x+3=0的兩個(gè)不相等的實(shí)數(shù)根,據(jù)此可得a+b=4,必=3,將其代入到原式=三也
ab
即可得出答案.
【解答】解:?..實(shí)數(shù)。、。分別滿足/-4a+7=0,層-5什3=0,且aWb,
.?“、b可看作方程戸-4x+3=5的兩個(gè)不相等的實(shí)數(shù)根,
則a+b—4,ab=3,
則原式=3士旦=5,
ab3
故答案為:1.
6
【點(diǎn)評(píng)】本題主要考查根與系數(shù)的關(guān)系,解題的關(guān)鍵是根據(jù)方程的特點(diǎn)得出6可看作
方程?-4x+3=0的兩個(gè)不相等的實(shí)數(shù)根及韋達(dá)定理.
16.(4分)已知關(guān)于x的分式方程』的解是非負(fù)數(shù),則”的取值范圍是_m
x-ll-x
-2且上W3.
【分析】解出分式方程,根據(jù)解是非負(fù)數(shù)求出,〃的取值范圍,再根據(jù)x=l是分式方程的
增根,求出此時(shí),〃的值,得到答案.
【解答】解:去分母得,
m-3—x-1,
解得x=m-8,
由題意得,m-220,
解得,
x=l是分式方程的增根,所有當(dāng)x=l時(shí),即〃?W4,
所以的取值范圍是且W3.
故答案為:機(jī)26且加力3.
【點(diǎn)評(píng)】本題考查的是分式方程的解法和一元一次不等式的解法,理解分式方程的增根
的判斷方法是解題的關(guān)鍵.
17.(4分)如圖,點(diǎn)尸是等邊三角形ABC內(nèi)的一點(diǎn),且B4=2,PC=2.5,則/APB的度
數(shù)為150。.
【分析】首先證明厶心。絲/XEBA,推出PB=EB,ZEBP=ZABC=60°,所以△8P。
為等邊三角形,得NBQP=60°,可得PE=PB=1.5,NEPB=60°,AE=PC=2.5,PA
=2,即可得到△”£■為直角三角形,則NAPE=90°,所以NAPB=90°+60°=150°;
由此即可解決問題.
:3BC94EBA,
:.PB=EB,NEBP=NABC=60°,
...△PBE為等邊三角形,
:.PE=PB=\.5,ZEPB=60Q,
:AE=PC=3.5,%=2,
:.PE5+AP2=AE1,
.?.△APE為直角三角形,
AZAPE=90°,
:.ZAPB=900+60°=150°;
故答案為:150°.
【點(diǎn)評(píng)】本題考查旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì)、勾股定理的逆定理等知識(shí),
解題的關(guān)鍵是勾股定理逆定理的應(yīng)用,屬于中考??碱}型.
三、解答題(本大題共9個(gè)小題,共82分.解答應(yīng)寫出必要的文字說明、證明過程或演算步
驟)
18.(8分)⑴計(jì)算:Tig-(2022-7T)°+(-1)2023+()~2:
(2)解方程:/+4x+2=0.
【分析】(1)先根據(jù)二次根式的性質(zhì),零指數(shù)幕,負(fù)整數(shù)指數(shù)幕和有理數(shù)的乘方進(jìn)行計(jì)
算,再算加減即可;
(2)移項(xiàng)后配方,開方,即可得出兩個(gè)一元一次方程,再求出方程的解即可.
【解答】解:⑴我-(2022-H)°+(-1)2°23+(高)-2
=4&-1+(-7)+4
=3A/6+2;
(2),+8x+2=0,
移項(xiàng),得/+以=-2,
配方,得X4+4X+4=-4+4,
(x+2)8=2,
開方,得x+2=±V8?
解得:xi--2+^8>X2—■2-A/6.
【點(diǎn)評(píng)】本題考查了零指數(shù)塞,負(fù)整數(shù)指數(shù)累,實(shí)數(shù)的混合運(yùn)算和解一元二次方程等知
識(shí)點(diǎn),能正確根據(jù)實(shí)數(shù)的運(yùn)算法則進(jìn)行計(jì)算是解(1)的關(guān)鍵,能正確配方是解(2)的
關(guān)鍵.
19.(8分)先化簡(jiǎn),再求值:(警哇-,_)+x+2,其中&〃加pR=1
x-1x-1X2-2X+1
【分析】原式括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變
形,約分得到最簡(jiǎn)結(jié)果,將X的值代入計(jì)算即可求出值.
【解答】解:原式=|3X+4_2(x+8)-2x+4-2x-6?
(x+8)(x-1)(x+1)(x-1)x+2(x+1)(x-l)
(X-4)2=X+7.(x-6產(chǎn)=x-8
x+2(x+1)(x-1)x+2x+1
當(dāng)x=&-8時(shí)迎=2=2-?立=j_
V52
【點(diǎn)評(píng)】此題考查了分式的化簡(jiǎn)求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
20.(8分)如圖,折疊矩形的一邊AQ,使點(diǎn)Z)落在邊8c的點(diǎn)尸處,BC=l5cm,求:
(1)線段8尸的長(zhǎng);
(2)線段EC的長(zhǎng).
【分析】(1)根據(jù)矩形的性質(zhì)以及折疊的性質(zhì)求得AF=15cm,AB=12cm,在
中,勾股定理即可求解;
(2)設(shè)EC=xcm,則尸C=6czn,DE=\2-x(cm),在RtZXEFC中,根據(jù)勾股定理建立
方程,解方程即可求解.
【解答】解:(1)???四邊形A2CD是矩形,
:.AD=BC,DC=AB/B=NC=90°,
??,折疊矩形的一邊A。,使點(diǎn)。落在邊BC的點(diǎn)尸處,BC=\5cm,
:.AF=AD=BC=\5cm,
在RtAABF中,
BF=7AF2-AB2=V156-122=9C,M;
(2)設(shè)EC=xcm,DC=AB=\2cm由折疊的性質(zhì)可得DE=EF=DC-EC=12-x(cm),
在RtZ\EFC中,EF,=EC2+FC2,
:.(12-x)5=7+67,
解得x=4.5.
即EC的長(zhǎng)為2.5cm.
【點(diǎn)評(píng)】本題考查了勾股定理,矩形的性質(zhì),折疊的性質(zhì),掌握以上知識(shí)是解題的關(guān)鍵.
21.(8分)如圖,ZVIBC三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請(qǐng)畫出△ABC關(guān)于原點(diǎn)。成中心對(duì)稱的圖形△All。,并寫出點(diǎn)4,Bi,。的坐
標(biāo);
(2)在x軸上找一點(diǎn)P,使得E4+P8的值最小,直接寫出點(diǎn)P的坐標(biāo).
【分析】(1)利用關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征寫出點(diǎn)Ai,Bi,。的坐標(biāo),然后描點(diǎn)即
可;
(2)作4點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)A',連接8〃交x軸于P點(diǎn),利用兩點(diǎn)之間線段最短
可判斷P點(diǎn)滿足條件.
【解答】解:(1)如圖,△A181C5為所作,Ai(-1,-4),81(-4,-2),G(-3,
-2).
II
(2)如圖,P點(diǎn)坐標(biāo)為(2.
【點(diǎn)評(píng)】本題考查了作圖-旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對(duì)應(yīng)角都相等都等于旋轉(zhuǎn)
角,對(duì)應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,
找到對(duì)應(yīng)點(diǎn),順次連接得出旋轉(zhuǎn)后的圖形.也考查了最短路線問題.
22.(10分)壽寧“金絲粉扣”是地方名優(yōu)特產(chǎn),深受消費(fèi)者喜愛.某超市購進(jìn)一批“金絲
粉扣”,進(jìn)價(jià)為每千克24元.調(diào)查發(fā)現(xiàn),平均每天能售出20千克,而當(dāng)銷售單價(jià)每降價(jià)
1元時(shí)
(1)設(shè)每千克降價(jià)x元,用含x的代數(shù)式表示實(shí)際銷售單價(jià)和銷售數(shù)量;
(2)若超市要使這種“金絲粉扣”的銷售利潤(rùn)每天達(dá)到330元,且讓顧客得到實(shí)惠,則
每千克應(yīng)降價(jià)多少元?
【分析】(1)由題意:當(dāng)銷售單價(jià)為每千克40元時(shí),平均每天能售出20千克,而當(dāng)銷
售單價(jià)每降價(jià)1元時(shí),平均每天能多售出2千克.即可得出結(jié)論;
(2)由題意:超市要使這種“金絲粉扣”的銷售利潤(rùn)每天達(dá)到330元,列出一元二次方
程,解方程,即可解決問題.
【解答】解:(1)由題意得:實(shí)際銷售單價(jià)為(40-x)元,銷售數(shù)量為(20+2^)千克;
(2)由題意得:(40-X-24)(20+2%)=330,
整理得:/-6x+5=7,
解得:Xi—1,X5=5,
???讓顧客得到實(shí)惠,
??x=5,
答:銷售利潤(rùn)每天達(dá)到330元,且讓顧客得到實(shí)惠.
【點(diǎn)評(píng)】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解
題的關(guān)鍵.
23.(10分)如圖所示,£>是等邊三角形ABC外一點(diǎn),DB=DC,點(diǎn)、E,F分別在AB
(1)求證:是8c的垂直平分線.
(2)若ED平分NBEF,求證:FD平分4EFC.
(3)在(2)的條件下,求NEOF的度數(shù).
【分析】(1)求出A8=AC,BD=DC,根據(jù)線段垂直平分線性質(zhì)求出即可;
(2)過。作。M丄EF,連接A。,求出AO平分求出/A8C=NACB=60°,
求出8Z)=OM,BD=DC,推出。M=OC即可;
(3)求出DB=DM,DM=DC,NEBD=NEMD=90°,證出△EBD四推出
NBDE=NEDM,同理NCOF=NFDW,進(jìn)而得出2NEDF=NBDC=120°.
【解答】證明:(1):△ABC是等邊三角形,
:.AB=AC,
??.A在8c的垂直平分線上,
,:BD=DC,
二。在BC的垂直平分線上,
.??AO是BC的垂直平分線;
(2)圖1
過。作。M丄EF,連接4£),
是8c的垂直平分線,
.?.AO平分/R4C,
是等邊三角形,
二/48C=/AC8=60°,
,:BD=DC,NBDC=120°,
:.NDBC=NDCB=30°,
:.ZABD^ZACD=90Q,
:.DB1AB,DC1AC,
':DM±EF,ED平■分NBEF,
:.BD=DM,BD=DC,
:.DM=DC,
:.FD平分NEFC;
(3)圖1
■:DE平分/BEF,丄AB,DF平■分4CFE,
:.DB=DM,DM=DC,
在和△EMZ)中
'NEBD=NEMD
<ZBED=ZMED)
DE=DE
...AEBD冬AEMD,
,NBDE=NEDM,
同理NCOF=NFO例,
:.2ZEDF=ZBDC=180°-30°-30°=120°,
:.NEDF=60°.
【點(diǎn)評(píng)】此題考查了等邊三角形,直角三角形,等腰三角形的性質(zhì)以及全等三角形的判
定與性質(zhì)等知識(shí).此題綜合性很強(qiáng),難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用
與輔助線的作法.
24.(10分)對(duì)〃?、〃定義一種新運(yùn)算“※",規(guī)定:m※/z=am-bn+5(a.6均為非零常數(shù)),
等式右邊的運(yùn)算是通常的四則運(yùn)算,3派(-1)=10.
(1)求“、b的值;
(2)若關(guān)于x的不等式組[(2X-3)<9有且只有一個(gè)整數(shù)解,試求字母t的取值范
圍.
【分析】(1)已知等式利用題中的新定義化簡(jiǎn),計(jì)算即可求出。與b的值;
(2)已知不等式組利用題中的新定義化簡(jiǎn),把。與。的值代入后,根據(jù)不等式組有且只
有一個(gè)整數(shù)解,確定出r的范圍即可.
【解答】解:(1):2※3=5,3※(-1)=10,
[2a-3b=-4①,
i5a+b=5②’
解得:
X※(2x-3)<5
(2),?,不等式組4且a=8,
3xX(-6)<t
:.ax-b(2x-3)+8=-3x+ll<9,4〃x+68+5=6x+17<7,
2_
x~3
解得:<
t-17
x<
"T"
???關(guān)于X的不等式組有且只有一個(gè)整數(shù)解,
3
解得:20VW23,
:.t的取值范圍是20VK23.
【點(diǎn)評(píng)】此題考查了一元一次不等式組的整數(shù)解,解二元一次方程組,以及解一元一次
不等式,弄清題中的新定義是解本題的關(guān)鍵.
25.(10分)閱讀下面的材料,并回答后面的問題.
對(duì)于任意一個(gè)正的兩位數(shù),如果滿足其個(gè)位上的數(shù)字與十位上的數(shù)字互不相同,且都不
為零,我們把這個(gè)新兩位數(shù)與原兩位數(shù)的和與II的商記為了(a).例如:a=12,這個(gè)新
兩位數(shù)與原兩位數(shù)的和為21+12=33,因?yàn)?3+11=3(12)=3.
(1)求:(62)的值;
(2)若“互異數(shù)”。滿足/(6)=6,求出所有“互異數(shù)”6的值;
(3)如果機(jī),〃都是"互異數(shù)”,且"+〃=100(m)+/-<?)的值.
【分析】(1)根據(jù)題目中“互異數(shù)”的定義進(jìn)行判斷,再根據(jù)題意,可以計(jì)算出/(62)
的值;
(2)設(shè)“互異數(shù)”。的十位數(shù)字是x,個(gè)位數(shù)字是y,且xWy,根據(jù)題目中“互異數(shù)”
的定義,列二元一次方程求解;
(3)根據(jù)題意,可以表示出,“、n,然后即可計(jì)算出f(m)+/?(?)的值,再判斷.
【解答】(1)根據(jù)題中條件可得:/(62)=62+21=88=8)
1111
."■(62)的值為8;
(2)設(shè)“互異數(shù)”b的十位數(shù)字是x,個(gè)位數(shù)字是y,
:.b=\Ox+y,對(duì)調(diào)之后的兩位數(shù)為10y+x,
."⑹=沖空0一+乂尸屮
⑹=3,
??x+y=6,
;?當(dāng)%=1時(shí),則y=3,
當(dāng)x=2時(shí),則y=4,
當(dāng)x=5時(shí),則y=2,
當(dāng)x=5時(shí),則y=8,
綜上所述:“互異數(shù)”人的值為15或24或42或51;
(3)?,?小〃都是“互異數(shù)”,
,設(shè)團(tuán)=10x+y,則〃=10(9-x)+(10-y),
:?于(M+f(〃)
=(」Ox+y)+(lOy+x)亠[10(9-y)+(10-y)+10(10-y)+(5-y)]
~ii1T~
=lIx+lly/Og-llxTly
-nn
=x+y+\9-x-y
=19.
【點(diǎn)評(píng)】本題考查因式分解的應(yīng)用、新定義,明確題意,理解新定義是解題的關(guān)鍵.
26.(10分)(1)在菱形A8C。中,ZA=60",AD=4.
①如圖1,點(diǎn)E,點(diǎn)尸分別是4B,求證:IXAED込△BFD;
②如圖2,NEDF=60°,點(diǎn)E,邊BC上,求四邊形EQFB的面積;
(2)如圖3,在菱形ABCD中,N
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 股權(quán)投資合同(模板)
- 2024勞動(dòng)合同管理制度勞動(dòng)合同管理制度規(guī)定
- 2024的車輛租賃合同范本模板
- 2024自費(fèi)出國留學(xué)中介服務(wù)合同示范文本
- 2024年多媒體制作及外包服務(wù)合同
- 酒類專賣店加盟協(xié)議
- 2024購房合同變更委托書
- 員工短期聘用合同書2024年
- 2024標(biāo)準(zhǔn)房屋買賣協(xié)議
- 技術(shù)開發(fā)合同書-合同樣本
- 幼兒園故事繪本《賣火柴的小女孩兒》課件
- 【工商企業(yè)管理專業(yè)實(shí)操實(shí)訓(xùn)報(bào)告2600字(論文)】
- HJ 636-2012 水質(zhì) 總氮的測(cè)定 堿性過硫酸鉀消解紫外分光光度法
- 主播薪資核算方案
- 機(jī)電儀運(yùn)維中心巡檢工作提升方案
- 10以內(nèi)口算題每頁50道
- 大學(xué)生職業(yè)生涯規(guī)劃與就業(yè)指導(dǎo)(高校學(xué)生學(xué)習(xí)職業(yè)生涯規(guī)劃與就業(yè)指導(dǎo)課程)全套教學(xué)課件
- 《道德與法治》三年級(jí)學(xué)情分析
- 校園禁煙承諾書(12篇)
- 國家開放大學(xué)《計(jì)算機(jī)網(wǎng)絡(luò)》課程實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)六-計(jì)算機(jī)網(wǎng)絡(luò)綜合性實(shí)-
- 學(xué)校教育統(tǒng)計(jì)工作計(jì)劃方案
評(píng)論
0/150
提交評(píng)論