2023-2024學(xué)年河北省廊坊市六校聯(lián)考高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年河北省廊坊市六校聯(lián)考高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年河北省廊坊市六校聯(lián)考高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年河北省廊坊市六校聯(lián)考高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年河北省廊坊市六校聯(lián)考高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年河北省廊坊市六校聯(lián)考高三3月份第一次模擬考試數(shù)學(xué)試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.2.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.3.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg4.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.5.的內(nèi)角的對邊分別為,已知,則角的大小為()A. B. C. D.6.在中,內(nèi)角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列7.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關(guān)關(guān)系,統(tǒng)計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關(guān)關(guān)系為()A.正相關(guān),相關(guān)系數(shù)的值為B.負相關(guān),相關(guān)系數(shù)的值為C.負相關(guān),相關(guān)系數(shù)的值為D.正相關(guān),相關(guān)負數(shù)的值為8.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-9.已知等差數(shù)列的前n項和為,,則A.3 B.4 C.5 D.610.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.11.函數(shù)的大致圖象是()A. B.C. D.12.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.63二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)的圖像向左平移個單位得到函數(shù)的圖像.則在區(qū)間上的最小值為________.14.已知平面向量,,且,則向量與的夾角的大小為________.15.設(shè),若關(guān)于的方程有實數(shù)解,則實數(shù)的取值范圍_____.16.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數(shù)隨時間變化的散點圖.為了預(yù)測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點圖判斷,與哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)以下是1月25日至1月29日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:時間1月25日1月26日1月27日1月28日1月29日累計確診人數(shù)的真實數(shù)據(jù)19752744451559747111(ⅰ)當1月25日至1月27日這3天的誤差(模型預(yù)測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強力領(lǐng)導(dǎo)下,全國人民共同采取了強力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預(yù)測數(shù)據(jù),則認為防護措施有效,請判斷預(yù)防措施是否有效?附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850718.(12分)設(shè)為坐標原點,動點在橢圓:上,該橢圓的左頂點到直線的距離為.(1)求橢圓的標準方程;(2)若橢圓外一點滿足,平行于軸,,動點在直線上,滿足.設(shè)過點且垂直的直線,試問直線是否過定點?若過定點,請寫出該定點,若不過定點請說明理由.19.(12分)在直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程(為參數(shù)),若直線的交點為,當變化時,點的軌跡是曲線(1)求曲線的普通方程;(2)以坐標原點為極點,軸非負半軸為極軸且取相同的單位長度建立極坐標系,設(shè)射線的極坐標方程為,,點為射線與曲線的交點,求點的極徑.20.(12分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.21.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù).(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求的取值范圍;(2)若函數(shù)在區(qū)間上恰有3個零點,且,求的取值范圍.22.(10分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數(shù),即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點睛】此題考查集合相關(guān)的新定義問題,其本質(zhì)在于弄清計數(shù)原理,分類討論,分別求解.2、B【解析】

根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.3、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.4、D【解析】

根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.5、A【解析】

先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡,可求出解B.【詳解】由正弦定理可得,即,即有,因為,則,而,所以.故選:A【點睛】此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.6、C【解析】

由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.7、C【解析】

根據(jù)正負相關(guān)的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關(guān).相關(guān)系數(shù)為負.故選:C.【點睛】本題考查變量的相關(guān)關(guān)系,考查正相關(guān)和負相關(guān)的區(qū)別.掌握正負相關(guān)的定義是解題基礎(chǔ).8、C【解析】

直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【點睛】本題考查過定點的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.9、C【解析】

方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因為,所以,則.故選C.10、D【解析】

設(shè)圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.11、A【解析】

用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題.12、B【解析】

根據(jù)二項式展開式的通項公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B【點睛】本小題考查二項式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識,考查理解能力,計算能力,分類討論和應(yīng)用意識.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

注意平移是針對自變量x,所以,再利用整體換元法求值域(最值)即可.【詳解】由已知,,,又,故,,所以的最小值為.故答案為:.【點睛】本題考查正弦型函數(shù)在給定區(qū)間上的最值問題,涉及到圖象的平移變換、輔助角公式的應(yīng)用,是一道基礎(chǔ)題.14、【解析】

由,解得,進而求出,即可得出結(jié)果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.【點睛】本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎(chǔ)知識;考查運算求解能力,屬于基礎(chǔ)題.15、【解析】

先求出,從而得函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).即可得的最大值為,令,得函數(shù)取得最小值,由有實數(shù)解,,進而得實數(shù)的取值范圍.【詳解】解:,當時,;當時,;函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).所以的最大值為,令,所以當時,函數(shù)取得最小值,又因為方程有實數(shù)解,那么,即,所以實數(shù)的取值范圍是:.故答案為:【點睛】本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問題,導(dǎo)數(shù)的應(yīng)用,屬于中檔題.16、10【解析】

作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)適宜(2)(3)(?。┗貧w方程可靠(ⅱ)防護措施有效【解析】

(1)根據(jù)散點圖即可判斷出結(jié)果.(2)設(shè),則,求出,再由回歸方程過樣本中心點求出,即可求出回歸方程.(3)(?。├帽碇袛?shù)據(jù),計算出誤差即可判斷回歸方程可靠;(ⅱ)當時,,與真實值作比較即可判斷有效.【詳解】(1)根據(jù)散點圖可知:適宜作為累計確診人數(shù)與時間變量的回歸方程類型;(2)設(shè),則,,,;(3)(ⅰ)時,,,當時,,,當時,,,所以(2)的回歸方程可靠:(ⅱ)當時,,10150遠大于7111,所以防護措施有效.【點睛】本題考查了函數(shù)模型的應(yīng)用,在求非線性回歸方程時,現(xiàn)將非線性的化為線性的,考查了誤差的計算以及用函數(shù)模型分析數(shù)據(jù),屬于基礎(chǔ)題.18、(1);(2)見解析【解析】

(1)根據(jù)點到直線的距離公式可求出a的值,即可得橢圓方程;(2)由題意M(x0,y0),N(x0,y1),P(2,t),根據(jù),可得y1=2y0,由,可得2x0+2y0t=6,再根據(jù)向量的運算可得,即可證明.【詳解】(1)左頂點A的坐標為(﹣a,0),∵=,∴|a﹣5|=3,解得a=2或a=8(舍去),∴橢圓C的標準方程為+y2=1,(2)由題意M(x0,y0),N(x0,y1),P(2,t),則依題意可知y1≠y0,得(x0﹣2x0,y1﹣2y0)(0,y1﹣y0)=0,整理可得y1=2y0,或y1=y(tǒng)0(舍),,得(x0,2y0)(2﹣x0,t﹣2y0)=2,整理可得2x0+2y0t=x02+4y02+2=6,由(1)可得F(,0),∴=(﹣x0,﹣2y0),∴?=(﹣x0,﹣2y0)(2,t)=6﹣2x0﹣2y0t=0,∴NF⊥OP,故過點N且垂直于OP的直線過橢圓C的右焦點F.【點睛】本題考查了橢圓方程的求法,直線和橢圓的關(guān)系,向量的運算,考查了運算求解能力和轉(zhuǎn)化與化歸能力,屬于中檔題.19、(1);(2)【解析】

(1)將兩直線化為普通方程,消去參數(shù),即可求出曲線的普通方程;(2)設(shè)Q點的直角坐標系坐標為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為聯(lián)立直線,方程消去參數(shù)k,得曲線C的普通方程為整理得.(2)設(shè)Q點的直角坐標系坐標為,由可得代入曲線C的方程可得,解得(舍),所以點的極徑為.【點睛】本題主要考查了直線的參數(shù)方程化為普通方程,普通方程化為極坐標方程,極徑的求法,屬于中檔題.20、(Ⅰ)證明見詳解;(Ⅱ).【解析】

(Ⅰ)取中點為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標原點,建立空間直角坐標系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點,連接,.如下圖所示:因為,分別是線段和的中點,所以是梯形的中位線,所以.又,所以.因為,,所以四邊形為平行四邊形,所以.所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因為,且平面,故可以為原點,的方向為軸正方向建立如圖所示的空間直角坐標系,如下圖所示:不妨設(shè),則,所以,,,,.所以,,.設(shè)平面的法向量為,則所以可取.設(shè)直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.21、(1);(2).【解析】

(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區(qū)間內(nèi)恰有一個零點,轉(zhuǎn)化為在區(qū)間內(nèi)恰有兩個零點,由(1)的結(jié)論對分類討論,根據(jù)單調(diào)性,結(jié)合零點存在性定理,即可求出結(jié)論.【詳解】(1)由題意得,則,當函數(shù)在區(qū)間上單調(diào)遞增時,在區(qū)間上恒成立.∴(其中),解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論