版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖北省中考數(shù)學(xué)適應(yīng)性模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.已知,則的值為A. B. C. D.2.第24屆冬奧會(huì)將于2022年在北京和張家口舉行,冬奧會(huì)的項(xiàng)目有滑雪(如跳臺(tái)滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質(zhì)地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現(xiàn)將這5張卡片洗勻后正面向下放在桌子上,從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是()A. B. C. D.3.如圖所示的幾何體,上下部分均為圓柱體,其左視圖是()A. B. C. D.4.如圖,在△ABC和△BDE中,點(diǎn)C在邊BD上,邊AC交邊BE于點(diǎn)F,若AC=BD,AB=ED,BC=BE,則∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF5.下列各運(yùn)算中,計(jì)算正確的是()A.a(chǎn)12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a?3a=6a26.下列所給函數(shù)中,y隨x的增大而減小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C. D.y=x+17.函數(shù)y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>28.如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)P在x軸上,若以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)9.如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點(diǎn)E.若BF=8,AB=5,則AE的長(zhǎng)為()A.5 B.6 C.8 D.1210.如圖,某地修建高速公路,要從A地向B地修一條隧道(點(diǎn)A、B在同一水平面上).為了測(cè)量A、B兩地之間的距離,一架直升飛機(jī)從A地出發(fā),垂直上升800米到達(dá)C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,邊長(zhǎng)為4的正方形ABCD內(nèi)接于⊙O,點(diǎn)E是弧AB上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),點(diǎn)F是弧BC上的一點(diǎn),連接OE,OF,分別與交AB,BC于點(diǎn)G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點(diǎn)E位置的變化而變化;④△GBH周長(zhǎng)的最小值為4+2.其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)12.已知矩形ABCD,AD>AB,以矩形ABCD的一邊為邊畫等腰三角形,使得它的第三個(gè)頂點(diǎn)在矩形ABCD的其他邊上,則可以畫出的不同的等腰三角形的個(gè)數(shù)為_(kāi)______________.13.如果兩圓的半徑之比為,當(dāng)這兩圓內(nèi)切時(shí)圓心距為3,那么當(dāng)這兩圓相交時(shí),圓心距d的取值范圍是__________.14.若分式x-115.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,點(diǎn)E,F(xiàn)分別在邊AB,AC上,將△AEF沿直線EF翻折,點(diǎn)A落在點(diǎn)P處,且點(diǎn)P在直線BC上.則線段CP長(zhǎng)的取值范圍是____.16.分解因式:x2y﹣xy2=_____.三、解答題(共8題,共72分)17.(8分)如圖,一棵大樹在一次強(qiáng)臺(tái)風(fēng)中折斷倒下,未折斷樹桿與地面仍保持垂直的關(guān)系,而折斷部分與未折斷樹桿形成的夾角.樹桿旁有一座與地面垂直的鐵塔,測(cè)得米,塔高米.在某一時(shí)刻的太陽(yáng)照射下,未折斷樹桿落在地面的影子長(zhǎng)為米,且點(diǎn)、、、在同一條直線上,點(diǎn)、、也在同一條直線上.求這棵大樹沒(méi)有折斷前的高度.(結(jié)果精確到,參考數(shù)據(jù):,,).18.(8分)如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長(zhǎng)2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過(guò)公路路面的中心線時(shí)照明效果最好.此時(shí),路燈的燈柱AB的高應(yīng)該設(shè)計(jì)為多少米.(結(jié)果保留根號(hào))19.(8分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點(diǎn),點(diǎn)B在數(shù)軸的正半軸上運(yùn)動(dòng),點(diǎn)B在數(shù)軸上所表示的數(shù)為m.當(dāng)半圓D與數(shù)軸相切時(shí),m=.半圓D與數(shù)軸有兩個(gè)公共點(diǎn),設(shè)另一個(gè)公共點(diǎn)是C.①直接寫出m的取值范圍是.②當(dāng)BC=2時(shí),求△AOB與半圓D的公共部分的面積.當(dāng)△AOB的內(nèi)心、外心與某一個(gè)頂點(diǎn)在同一條直線上時(shí),求tan∠AOB的值.20.(8分)如圖,M是平行四邊形ABCD的對(duì)角線上的一點(diǎn),射線AM與BC交于點(diǎn)F,與DC的延長(zhǎng)線交于點(diǎn)H.(1)求證:AM2=MF.MH(2)若BC2=BD.DM,求證:∠AMB=∠ADC.21.(8分)如圖所示,平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),二次函數(shù)的圖象與x軸交于、B兩點(diǎn),與y軸交于點(diǎn)C;(1)求c與b的函數(shù)關(guān)系式;(2)點(diǎn)D為拋物線頂點(diǎn),作拋物線對(duì)稱軸DE交x軸于點(diǎn)E,連接BC交DE于F,若AE=DF,求此二次函數(shù)解析式;(3)在(2)的條件下,點(diǎn)P為第四象限拋物線上一點(diǎn),過(guò)P作DE的垂線交拋物線于點(diǎn)M,交DE于H,點(diǎn)Q為第三象限拋物線上一點(diǎn),作于N,連接MN,且,當(dāng)時(shí),連接PC,求的值.22.(10分)根據(jù)圖中給出的信息,解答下列問(wèn)題:放入一個(gè)小球水面升高,,放入一個(gè)大球水面升高;如果要使水面上升到50,應(yīng)放入大球、小球各多少個(gè)?23.(12分)如圖,矩形ABCD中,點(diǎn)E為BC上一點(diǎn),DF⊥AE于點(diǎn)F,求證:∠AEB=∠CDF.24.已知線段a及如圖形狀的圖案.(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)(2)當(dāng)a=6時(shí),求圖案中陰影部分正六邊形的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】由題意得,4?x?0,x?4?0,解得x=4,則y=3,則=,故選:C.2、B【解析】
先找出滑雪項(xiàng)目圖案的張數(shù),結(jié)合5張形狀、大小、質(zhì)地均相同的卡片,再根據(jù)概率公式即可求解.【詳解】∵有5張形狀、大小、質(zhì)地均相同的卡片,滑雪項(xiàng)目圖案的有高山滑雪和單板滑雪2張,∴從中隨機(jī)抽取一張,抽出的卡片正面恰好是滑雪項(xiàng)目圖案的概率是.故選B.【點(diǎn)睛】本題考查了簡(jiǎn)單事件的概率.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.3、C【解析】試題分析:∵該幾何體上下部分均為圓柱體,∴其左視圖為矩形,故選C.考點(diǎn):簡(jiǎn)單組合體的三視圖.4、C【解析】
根據(jù)全等三角形的判定與性質(zhì),可得∠ACB=∠DBE的關(guān)系,根據(jù)三角形外角的性質(zhì),可得答案.【詳解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本題正確答案為C.【點(diǎn)睛】.本題主要考查全等三角形的判定與性質(zhì),熟悉掌握是關(guān)鍵.5、D【解析】【分析】根據(jù)同底數(shù)冪的除法、積的乘方、完全平方公式、單項(xiàng)式乘法的法則逐項(xiàng)計(jì)算即可得.【詳解】A、原式=a9,故A選項(xiàng)錯(cuò)誤,不符合題意;B、原式=27a6,故B選項(xiàng)錯(cuò)誤,不符合題意;C、原式=a2﹣2ab+b2,故C選項(xiàng)錯(cuò)誤,不符合題意;D、原式=6a2,故D選項(xiàng)正確,符合題意,故選D.【點(diǎn)睛】本題考查了同底數(shù)冪的除法、積的乘方、完全平方公式、單項(xiàng)式乘法等運(yùn)算,熟練掌握各運(yùn)算的運(yùn)算法則是解本題的關(guān)鍵.6、A【解析】
根據(jù)二次函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)及反比例函數(shù)的性質(zhì)判斷出函數(shù)符合y隨x的增大而減小的選項(xiàng).【詳解】解:A.此函數(shù)為一次函數(shù),y隨x的增大而減小,正確;B.此函數(shù)為二次函數(shù),當(dāng)x<0時(shí),y隨x的增大而減小,錯(cuò)誤;C.此函數(shù)為反比例函數(shù),在每個(gè)象限,y隨x的增大而減小,錯(cuò)誤;D.此函數(shù)為一次函數(shù),y隨x的增大而增大,錯(cuò)誤.故選A.【點(diǎn)睛】本題考查了二次函數(shù)、一次函數(shù)、反比例函數(shù)的性質(zhì),掌握函數(shù)的增減性是解決問(wèn)題的關(guān)鍵.7、D【解析】
根據(jù)被開(kāi)放式的非負(fù)性和分母不等于零列出不等式即可解題.【詳解】解:∵函數(shù)y=有意義,∴x-20,即x>2故選D【點(diǎn)睛】本題考查了根式有意義的條件,屬于簡(jiǎn)單題,注意分母也不能等于零是解題關(guān)鍵.8、C【解析】
分為三種情況:①AP=OP,②AP=OA,③OA=OP,分別畫出即可.【詳解】如圖,分OP=AP(1點(diǎn)),OA=AP(1點(diǎn)),OA=OP(2點(diǎn))三種情況討論.∴以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有4個(gè).故選C.【點(diǎn)睛】本題考查了等腰三角形的判定和坐標(biāo)與圖形的性質(zhì),主要考查學(xué)生的動(dòng)手操作能力和理解能力,注意不要漏解.9、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質(zhì)可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進(jìn)而得出AE=2AO=1.故選B.考點(diǎn):1、作圖﹣基本作圖,2、平行四邊形的性質(zhì),3、勾股定理,4、平行線的性質(zhì)10、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問(wèn)題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用﹣仰角俯角問(wèn)題,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、①②④【解析】
①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對(duì)等弧得到,可以判斷①;
②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;
③通過(guò)證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;
④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,
∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,,
∴△BOE≌△COF,
∴BE=CF,
∴,①正確;
②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,
∴△BOG≌△COH;
∴OG=OH,∵∠GOH=90°,
∴△OGH是等腰直角三角形,②正確.③如圖所示,
∵△HOM≌△GON,
∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯(cuò)誤;
④∵△BOG≌△COH,
∴BG=CH,
∴BG+BH=BC=4,
設(shè)BG=x,則BH=4-x,
則GH==,
∴其最小值為4+2,④正確.
故答案為:①②④【點(diǎn)睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對(duì)等弧,等腰直角三角形的判定,勾股定理,面積的計(jì)算,綜合性較強(qiáng).12、8【解析】
根據(jù)題意作出圖形即可得出答案,【詳解】如圖,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,為等腰三角形,故有8個(gè)滿足題意得點(diǎn).【點(diǎn)睛】此題主要考查矩形的對(duì)稱性,解題的關(guān)鍵是根據(jù)題意作出圖形.13、.【解析】
先根據(jù)比例式設(shè)兩圓半徑分別為,根據(jù)內(nèi)切時(shí)圓心距列出等式求出半徑,然后利用相交時(shí)圓心距與半徑的關(guān)系求解.【詳解】解:設(shè)兩圓半徑分別為,由題意,得3x-2x=3,解得,則兩圓半徑分別為,所以當(dāng)這兩圓相交時(shí),圓心距d的取值范圍是,即,故答案為.【點(diǎn)睛】本題考查了圓和圓的位置與兩圓的圓心距、半徑的數(shù)量之間的關(guān)系,熟練掌握?qǐng)A心距與圓位置關(guān)系的數(shù)量關(guān)系是解決本題的關(guān)鍵.14、1【解析】試題分析:根據(jù)題意,得|x|-1=0,且x-1≠0,解得x=-1.考點(diǎn):分式的值為零的條件.15、【解析】
根據(jù)點(diǎn)E、F在邊AB、AC上,可知當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),CP有最小值,當(dāng)點(diǎn)F與點(diǎn)C重合時(shí)CP有最大值,根據(jù)分析畫出符合條件的圖形即可得.【詳解】如圖,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),CP的值最小,此時(shí)BP=AB=3,所以PC=BC-BP=4-3=1,如圖,當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),CP的值最大,此時(shí)CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根據(jù)勾股定理可得AC=5,所以CP的最大值為5,所以線段CP長(zhǎng)的取值范圍是1≤CP≤5,故答案為1≤CP≤5.【點(diǎn)睛】本題考查了折疊問(wèn)題,能根據(jù)點(diǎn)E、F分別在線段AB、AC上,點(diǎn)P在直線BC上確定出點(diǎn)E、F位于什么位置時(shí)PC有最大(?。┲凳墙忸}的關(guān)鍵.16、xy(x﹣y)【解析】原式=xy(x﹣y).故答案為xy(x﹣y).三、解答題(共8題,共72分)17、米.【解析】試題分析:要求這棵大樹沒(méi)有折斷前的高度,只要求出AB和AC的長(zhǎng)度即可,根據(jù)題目中的條件可以求得AB和AC的長(zhǎng)度,即可得到結(jié)論.試題解析:解:∵AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△FAB∽△FDE,∴,∵FB=4米,BE=6米,DE=9米,∴,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos∠BAC=,∴AC===6米,∴AB+AC=3.6+6=9.6米,即這棵大樹沒(méi)有折斷前的高度是9.6米.點(diǎn)睛:本題考查直角三角形的應(yīng)用,解題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用銳角三角函數(shù)進(jìn)行解答.18、(10-4)米【解析】
延長(zhǎng)OC,AB交于點(diǎn)P,△PCB∽△PAO,根據(jù)相似三角形對(duì)應(yīng)邊比例相等的性質(zhì)即可解題.【詳解】解:如圖,延長(zhǎng)OC,AB交于點(diǎn)P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC?tan60°=米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴,∴PA===米,∴AB=PA﹣PB=()米.答:路燈的燈柱AB高應(yīng)該設(shè)計(jì)為()米.19、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】
(1)根據(jù)題意由勾股定理即可解答(2)①根據(jù)題意可知半圓D與數(shù)軸相切時(shí),只有一個(gè)公共點(diǎn),和當(dāng)O、A、B三點(diǎn)在數(shù)軸上時(shí),求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據(jù)題意如圖1,當(dāng)OB=AB時(shí),內(nèi)心、外心與頂點(diǎn)B在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,列出方程求解即可解答如圖2,當(dāng)OB=OA時(shí),內(nèi)心、外心與頂點(diǎn)O在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,列出方程求解即可解答【詳解】(1)當(dāng)半圓與數(shù)軸相切時(shí),AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數(shù)軸相切時(shí),只有一個(gè)公共點(diǎn),此時(shí)m=,當(dāng)O、A、B三點(diǎn)在數(shù)軸上時(shí),m=7+4=11,∴半圓D與數(shù)軸有兩個(gè)公共點(diǎn)時(shí),m的取值范圍為.故答案為.②如圖,連接DC,當(dāng)BC=2時(shí),∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當(dāng)OB=AB時(shí),內(nèi)心、外心與頂點(diǎn)B在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如圖2,當(dāng)OB=OA時(shí),內(nèi)心、外心與頂點(diǎn)O在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,則72﹣(4﹣x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=.綜合以上,可得tan∠AOB的值為或.【點(diǎn)睛】此題此題考勾股定理,切線的性質(zhì),等邊三角形的判定和性質(zhì),三角形的內(nèi)心和外心,解題關(guān)鍵在于作輔助線20、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】
(1)由于AD∥BC,AB∥CD,通過(guò)三角形相似,找到分別于,都相等的比,把比例式變形為等積式,問(wèn)題得證.(2)推出∽,再結(jié)合,可證得答案.【詳解】(1)證明:∵四邊形是平行四邊形,∴,,∴,,∴即.(2)∵四邊形是平行四邊形,∴,又∵,∴即,又∵,∴∽,∴,∵,∴,∵,∴.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì).21、(1);(2);(3)【解析】
(1)把A(-1,0)代入y=x2-bx+c,即可得到結(jié)論;(2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,當(dāng)x=0時(shí),得到y(tǒng)=-b-1,根據(jù)等腰直角三角形的性質(zhì)得到D(,-b-2),將D(,-b-2)代入y=x2-bx-1-b解方程即可得到結(jié)論;(3)連接QM,DM,根據(jù)平行線的判定得到QN∥MH,根據(jù)平行線的性質(zhì)得到∠NMH=∠QNM,根據(jù)已知條件得到∠QMN=∠MQN,設(shè)QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,設(shè)MH=s,求得NH=t2-s2,根據(jù)勾股定理得到NH=1,根據(jù)三角函數(shù)的定義得到∠NMH=∠MDH推出∠NMD=90°;根據(jù)三角函數(shù)的定義列方程得到t1=,t2=-(舍去),求得MN=,根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】(1)把A(﹣1,0)代入,∴,∴;(2)由(1)得,,∵點(diǎn)D為拋物線頂點(diǎn),∴,∴,當(dāng)時(shí),,∴,∴,∴,∴,∴,∴,將代入得,,解得:,(舍去),∴二次函數(shù)解析式為:;(3)連接QM,DM,∵,,∴,∴,∴,∵,∴,∵,∴,設(shè),則,∴,同理,設(shè),則,∴,在中,,∴,∴,∴,∴,∵,∴,∵,∴,∴;∵,∴,,∵,∴,即,解得:,(舍去),∴,∵,∴,∴,當(dāng)時(shí),,∴,∴,∴,∵,∴,∴,,,過(guò)P作于T,∴,∴,∴.【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,平行線的性質(zhì),三角函數(shù)的定義,勾股定理,正確的作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.22、詳見(jiàn)解析【
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《血液凈化質(zhì)量控制》課件
- 工會(huì)續(xù)簽合同的領(lǐng)導(dǎo)評(píng)語(yǔ)
- 《外部形態(tài)頭部》課件2
- 2025年甘肅道路客貨運(yùn)輸從業(yè)資格證b2考試題庫(kù)
- 2025年銀川貨運(yùn)從業(yè)資格證題目答案
- 《外出安全知識(shí)》課件
- 《食品安全風(fēng)險(xiǎn)監(jiān)測(cè)》課件
- 鐵路運(yùn)輸勞動(dòng)防護(hù)用品管理要求
- 酒店式公寓外墻修繕合同
- 保險(xiǎn)公司業(yè)務(wù)員聘用合同樣本
- 2024至2030年中國(guó)無(wú)甲醛多層板數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 算法設(shè)計(jì)與分析 課件 5.4.1-動(dòng)態(tài)規(guī)劃-0-1背包問(wèn)題-問(wèn)題描述和分析
- 分子生物學(xué)課件第一章醫(yī)學(xué)分子生物學(xué)緒論
- 電工技能與實(shí)訓(xùn)(第4版)教學(xué)指南 高教版
- 轉(zhuǎn)化學(xué)困生工作總結(jié)課件
- 新高考數(shù)學(xué)專題復(fù)習(xí)專題42圓錐曲線中的向量問(wèn)題專題練習(xí)(學(xué)生版+解析)
- 高中語(yǔ)文 必修上冊(cè) 第七單元 《我與地壇》
- 南航集團(tuán)招聘筆試題庫(kù)2024
- 倒數(shù)的認(rèn)識(shí)(教學(xué)設(shè)計(jì))-2023-2024學(xué)年六年級(jí)上冊(cè)數(shù)學(xué)人教版
- 科技創(chuàng)新夢(mèng)主題班會(huì)
- 乒乓球校本課程設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論