2024屆黑龍江省齊齊哈爾市拜泉縣中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第1頁
2024屆黑龍江省齊齊哈爾市拜泉縣中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第2頁
2024屆黑龍江省齊齊哈爾市拜泉縣中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第3頁
2024屆黑龍江省齊齊哈爾市拜泉縣中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第4頁
2024屆黑龍江省齊齊哈爾市拜泉縣中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆黑龍江省齊齊哈爾市拜泉縣中考數(shù)學(xué)模擬預(yù)測(cè)題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.|–|的倒數(shù)是()A.–2 B.– C. D.22.某單位若干名職工參加普法知識(shí)競(jìng)賽,將成績(jī)制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,這些職工成績(jī)的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分3.已知一個(gè)多邊形的內(nèi)角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.94.下列算式中,結(jié)果等于x6的是()A.x2?x2?x2B.x2+x2+x2C.x2?x3D.x4+x25.某廣場(chǎng)上有一個(gè)形狀是平行四邊形的花壇(如圖),分別種有紅、黃、藍(lán)、綠、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法錯(cuò)誤的是()A.紅花、綠花種植面積一定相等B.紫花、橙花種植面積一定相等C.紅花、藍(lán)花種植面積一定相等D.藍(lán)花、黃花種植面積一定相等6.關(guān)于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點(diǎn)C.=± D.與最接近的整數(shù)是37.如圖,平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,則k值為()A.﹣14 B.14 C.7 D.﹣78.如圖,已知,用尺規(guī)作圖作.第一步的作法以點(diǎn)為圓心,任意長(zhǎng)為半徑畫弧,分別交,于點(diǎn),第二步的作法是()A.以點(diǎn)為圓心,長(zhǎng)為半徑畫弧,與第1步所畫的弧相交于點(diǎn)B.以點(diǎn)為圓心,長(zhǎng)為半徑畫弧,與第1步所畫的弧相交于點(diǎn)C.以點(diǎn)為圓心,長(zhǎng)為半徑畫弧,與第1步所畫的弧相交于點(diǎn)D.以點(diǎn)為圓心,長(zhǎng)為半徑畫弧,與第1步所畫的弧相交于點(diǎn)9.如圖給定的是紙盒的外表面,下面能由它折疊而成的是()A. B. C. D.10.如圖,在平行四邊形ABCD中,∠ABC的平分線BF交AD于點(diǎn)F,F(xiàn)E∥AB.若AB=5,AD=7,BF=6,則四邊形ABEF的面積為()A.48 B.35 C.30 D.24二、填空題(共7小題,每小題3分,滿分21分)11.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點(diǎn),四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比為_____.12.為迎接五月份全縣中考九年級(jí)體育測(cè)試,小強(qiáng)每天堅(jiān)持引體向上鍛煉,他記錄了某一周每天做引體向上的個(gè)數(shù),如下表:其中有三天的個(gè)數(shù)被墨汁覆蓋了,但小強(qiáng)已經(jīng)計(jì)算出這組數(shù)據(jù)唯一眾數(shù)是13,平均數(shù)是12,那么這組數(shù)據(jù)的方差是_____.13.如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,若∠C=20°,則∠CDA=°.14.函數(shù)y=中自變量x的取值范圍是________,若x=4,則函數(shù)值y=________.15.如圖,直線a∥b,正方形ABCD的頂點(diǎn)A、B分別在直線a、b上.若∠2=73°,則∠1=.16.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點(diǎn),連接EF,使四邊形ABFE為正方形,若點(diǎn)G是AD上的動(dòng)點(diǎn),連接FG,將矩形沿FG折疊使得點(diǎn)C落在正方形ABFE的對(duì)角線所在的直線上,對(duì)應(yīng)點(diǎn)為P,則線段AP的長(zhǎng)為______.17.如圖,矩形OABC的邊OA,OC分別在軸、軸上,點(diǎn)B在第一象限,點(diǎn)D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對(duì)稱(點(diǎn)A′和A,B′和B分別對(duì)應(yīng)),若AB=1,反比例函數(shù)的圖象恰好經(jīng)過點(diǎn)A′,B,則的值為_________.三、解答題(共7小題,滿分69分)18.(10分)問題探究(1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點(diǎn)P,使△APD為等腰三角形,那么請(qǐng)畫出滿足條件的一個(gè)等腰三角形△APD,并求出此時(shí)BP的長(zhǎng);(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為邊AB、AC的中點(diǎn),當(dāng)AD=6時(shí),BC邊上存在一點(diǎn)Q,使∠EQF=90°,求此時(shí)BQ的長(zhǎng);問題解決(3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛(wèi)人員想在線段CD上選一點(diǎn)M安裝監(jiān)控裝置,用來監(jiān)視邊AB,現(xiàn)只要使∠AMB大約為60°,就可以讓監(jiān)控裝置的效果達(dá)到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,問在線段CD上是否存在點(diǎn)M,使∠AMB=60°?若存在,請(qǐng)求出符合條件的DM的長(zhǎng),若不存在,請(qǐng)說明理由.19.(5分)如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點(diǎn).求反比例函數(shù)的表達(dá)式在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)求△PAB的面積.20.(8分)已知,求代數(shù)式的值.21.(10分)已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測(cè)得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結(jié)果精確到1米).22.(10分)某校航模小組借助無人飛機(jī)航拍校園,如圖,無人飛機(jī)從A處水平飛行至B處需10秒,A在地面C的北偏東12°方向,B在地面C的北偏東57°方向.已知無人飛機(jī)的飛行速度為4米/秒,求這架無人飛機(jī)的飛行高度.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)23.(12分)樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點(diǎn)處有一休息亭,測(cè)得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測(cè)得E點(diǎn)的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)24.(14分)計(jì)算:

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)絕對(duì)值的性質(zhì),可化簡(jiǎn)絕對(duì)值,根據(jù)倒數(shù)的意義,可得答案.【詳解】|?|=,的倒數(shù)是2;∴|?|的倒數(shù)是2,故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)的性質(zhì),分子分母交換位置是求一個(gè)數(shù)倒數(shù)的關(guān)鍵.2、D【解析】

解:總?cè)藬?shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個(gè)數(shù)據(jù)都是96分,這些職工成績(jī)的中位數(shù)是(96+96)÷2=96;這些職工成績(jī)的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點(diǎn)睛】本題考查1.中位數(shù);2.扇形統(tǒng)計(jì)圖;3.條形統(tǒng)計(jì)圖;1.算術(shù)平均數(shù),掌握概念正確計(jì)算是關(guān)鍵.3、A【解析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內(nèi)角的度數(shù)為720°,依據(jù)多邊形的內(nèi)角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點(diǎn):多邊形的內(nèi)角和定理以及多邊形的外角和定理4、A【解析】試題解析:A、x2?x2?x2=x6,故選項(xiàng)A符合題意;

B、x2+x2+x2=3x2,故選項(xiàng)B不符合題意;

C、x2?x3=x5,故選項(xiàng)C不符合題意;

D、x4+x2,無法計(jì)算,故選項(xiàng)D不符合題意.

故選A.5、C【解析】

圖中,線段GH和EF將大平行四邊形ABCD分割成了四個(gè)小平行四邊形,平行四邊形的對(duì)角線平分該平行四邊形的面積,據(jù)此進(jìn)行解答即可.【詳解】解:由已知得題圖中幾個(gè)四邊形均是平行四邊形.又因?yàn)槠叫兴倪呅蔚囊粭l對(duì)角線將平行四邊形分成兩個(gè)全等的三角形,即面積相等,故紅花和綠花種植面積一樣大,藍(lán)花和黃花種植面積一樣大,紫花和橙花種植面積一樣大.故選擇C.【點(diǎn)睛】本題考查了平行四邊形的定義以及性質(zhì),知道對(duì)角線平分平行四邊形是解題關(guān)鍵.6、D【解析】

根據(jù)二次根式的加法法則、實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系、二次根式的化簡(jiǎn)及無理數(shù)的估算對(duì)各項(xiàng)依次分析,即可解答.【詳解】選項(xiàng)A,+無法計(jì)算;選項(xiàng)B,在數(shù)軸上存在表示的點(diǎn);選項(xiàng)C,;選項(xiàng)D,與最接近的整數(shù)是=1.故選D.【點(diǎn)睛】本題考查了二次根式的加法法則、實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系、二次根式的化簡(jiǎn)及無理數(shù)的估算等知識(shí)點(diǎn),熟記這些知識(shí)點(diǎn)是解題的關(guān)鍵.7、B【解析】過點(diǎn)D作DF⊥x軸于點(diǎn)F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點(diǎn)A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點(diǎn)D的坐標(biāo)為:(7,2),∴k,故選B.8、D【解析】

根據(jù)作一個(gè)角等于已知角的作法即可得出結(jié)論.【詳解】解:用尺規(guī)作圖作∠AOC=2∠AOB的第一步是以點(diǎn)O為圓心,以任意長(zhǎng)為半徑畫?、?,分別交OA、OB于點(diǎn)E、F,

第二步的作圖痕跡②的作法是以點(diǎn)F為圓心,EF長(zhǎng)為半徑畫弧.

故選:D.【點(diǎn)睛】本題考查的是作圖-基本作圖,熟知作一個(gè)角等于已知角的步驟是解答此題的關(guān)鍵.9、B【解析】

將A、B、C、D分別展開,能和原圖相對(duì)應(yīng)的即為正確答案:【詳解】A、展開得到,不能和原圖相對(duì)應(yīng),故本選項(xiàng)錯(cuò)誤;B、展開得到,能和原圖相對(duì),故本選項(xiàng)正確;C、展開得到,不能和原圖相對(duì)應(yīng),故本選項(xiàng)錯(cuò)誤;D、展開得到,不能和原圖相對(duì)應(yīng),故本選項(xiàng)錯(cuò)誤.故選B.10、D【解析】分析:首先證明四邊形ABEF為菱形,根據(jù)勾股定理求出對(duì)角線AE的長(zhǎng)度,從而得出四邊形的面積.詳解:∵AB∥EF,AF∥BE,∴四邊形ABEF為平行四邊形,∵BF平分∠ABC,∴四邊形ABEF為菱形,連接AE交BF于點(diǎn)O,∵BF=6,BE=5,∴BO=3,EO=4,∴AE=8,則四邊形ABEF的面積=6×8÷2=24,故選D.點(diǎn)睛:本題主要考查的是菱形的性質(zhì)以及判定定理,屬于中等難度的題型.解決本題的關(guān)鍵就是根據(jù)題意得出四邊形為菱形.二、填空題(共7小題,每小題3分,滿分21分)11、1:1【解析】

根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點(diǎn),∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【點(diǎn)睛】本題考查了矩形的性質(zhì)和判定,三角形的面積,主要考查學(xué)生的推理能力.12、【解析】分析:根據(jù)已知條件得到被墨汁覆蓋的三個(gè)數(shù)為:10,13,13,根據(jù)方差公式即可得到結(jié)論.詳解:∵平均數(shù)是12,∴這組數(shù)據(jù)的和=12×7=84,∴被墨汁覆蓋三天的數(shù)的和=84?4×12=36,∵這組數(shù)據(jù)唯一眾數(shù)是13,∴被墨汁覆蓋的三個(gè)數(shù)為:10,13,13,故答案為點(diǎn)睛:考查方差,算術(shù)平均數(shù),眾數(shù),根據(jù)這組數(shù)據(jù)唯一眾數(shù)是13,得到被墨汁覆蓋的三個(gè)數(shù)為:10,13,13是解題的關(guān)鍵.13、1.【解析】

連接OD,根據(jù)圓的切線定理和等腰三角形的性質(zhì)可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點(diǎn):切線的性質(zhì).14、x≥3y=1【解析】根據(jù)二次根式有意義的條件求解即可.即被開方數(shù)是非負(fù)數(shù),結(jié)果是x≥3,y=1.15、107°【解析】

過C作d∥a,得到a∥b∥d,構(gòu)造內(nèi)錯(cuò)角,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,及平角的定義,即可得到∠1的度數(shù).【詳解】過C作d∥a,∴a∥b,∴a∥b∥d,∵四邊形ABCD是正方形,∴∠DCB=90°,∵∠2=73°,∴∠6=90°-∠2=17°,∵b∥d,∴∠3=∠6=17°,∴∠4=90°-∠3=73°,∴∠5=180°-∠4=107°,∵a∥d,∴∠1=∠5=107°,故答案為107°.【點(diǎn)睛】本題考查了平行線的性質(zhì)以及正方形性質(zhì)的運(yùn)用,解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.解決問題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角.16、1或1﹣2【解析】

當(dāng)點(diǎn)P在AF上時(shí),由翻折的性質(zhì)可求得PF=FC=1,然后再求得正方形的對(duì)角線AF的長(zhǎng),從而可得到PA的長(zhǎng);當(dāng)點(diǎn)P在BE上時(shí),由正方形的性質(zhì)可知BP為AF的垂直平分線,則AP=PF,由翻折的性質(zhì)可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質(zhì)可知PF=CF=1,∵ABFE為正方形,邊長(zhǎng)為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質(zhì)可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點(diǎn)睛】本題主要考查的是翻折的性質(zhì)、正方形的性質(zhì)的應(yīng)用,根據(jù)題意畫出符合題意的圖形是解題的關(guān)鍵.17、【解析】

解:∵四邊形ABCO是矩形,AB=1,∴設(shè)B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關(guān)于直線OD對(duì)稱,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點(diǎn)A′,B,∴m?m=m,∴m=,∴k=.【點(diǎn)睛】本題考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;矩形的性質(zhì),利用數(shù)形結(jié)合思想解題是關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解析】

(1)由于△PAD是等腰三角形,底邊不定,需三種情況討論,運(yùn)用三角形全等、矩形的性質(zhì)、勾股定理等知識(shí)即可解決問題.(1)以EF為直徑作⊙O,易證⊙O與BC相切,從而得到符合條件的點(diǎn)Q唯一,然后通過添加輔助線,借助于正方形、特殊角的三角函數(shù)值等知識(shí)即可求出BQ長(zhǎng).(4)要滿足∠AMB=40°,可構(gòu)造以AB為邊的等邊三角形的外接圓,該圓與線段CD的交點(diǎn)就是滿足條件的點(diǎn),然后借助于等邊三角形的性質(zhì)、特殊角的三角函數(shù)值等知識(shí),就可算出符合條件的DM長(zhǎng).【詳解】(1)①作AD的垂直平分線交BC于點(diǎn)P,如圖①,則PA=PD.∴△PAD是等腰三角形.∵四邊形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以點(diǎn)D為圓心,AD為半徑畫弧,交BC于點(diǎn)P′,如圖①,則DA=DP′.∴△P′AD是等腰三角形.∵四邊形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③點(diǎn)A為圓心,AD為半徑畫弧,交BC于點(diǎn)P″,如圖①,則AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.綜上所述:在等腰三角形△ADP中,若PA=PD,則BP=1;若DP=DA,則BP=2-;若AP=AD,則BP=.(1)∵E、F分別為邊AB、AC的中點(diǎn),∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF為直徑作⊙O,過點(diǎn)O作OQ⊥BC,垂足為Q,連接EQ、FQ,如圖②.∵AD⊥BC,AD=4,∴EF與BC之間的距離為4.∴OQ=4∴OQ=OE=4.∴⊙O與BC相切,切點(diǎn)為Q.∵EF為⊙O的直徑,∴∠EQF=90°.過點(diǎn)E作EG⊥BC,垂足為G,如圖②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四邊形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴BG=.∴BQ=GQ+BG=4+.∴當(dāng)∠EQF=90°時(shí),BQ的長(zhǎng)為4+.(4)在線段CD上存在點(diǎn)M,使∠AMB=40°.理由如下:以AB為邊,在AB的右側(cè)作等邊三角形ABG,作GP⊥AB,垂足為P,作AK⊥BG,垂足為K.設(shè)GP與AK交于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑作⊙O,過點(diǎn)O作OH⊥CD,垂足為H,如圖③.則⊙O是△ABG的外接圓,∵△ABG是等邊三角形,GP⊥AB,∴AP=PB=AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等邊三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP?tan40°=145×=25.∴OA=1OP=90.∴OH<OA.∴⊙O與CD相交,設(shè)交點(diǎn)為M,連接MA、MB,如圖③.∴∠AMB=∠AGB=40°,OM=OA=90..∵OH⊥CD,OH=6,OM=90,∴HM==40.∵AE=200,OP=25,∴DH=200-25.若點(diǎn)M在點(diǎn)H的左邊,則DM=DH+HM=200-25+40.∵200-25+40>420,∴DM>CD.∴點(diǎn)M不在線段CD上,應(yīng)舍去.若點(diǎn)M在點(diǎn)H的右邊,則DM=DH-HM=200-25-40.∵200-25-40<420,∴DM<CD.∴點(diǎn)M在線段CD上.綜上所述:在線段CD上存在唯一的點(diǎn)M,使∠AMB=40°,此時(shí)DM的長(zhǎng)為(200-25-40)米.【點(diǎn)睛】本題考查了垂直平分線的性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、正方形的判定與性質(zhì)、直線與圓的位置關(guān)系、圓周角定理、三角形的中位線定理、全等三角形的判定與性質(zhì)、勾股定理、特殊角的三角函數(shù)值等知識(shí),考查了操作、探究等能力,綜合性非常強(qiáng).而構(gòu)造等邊三角形及其外接圓是解決本題的關(guān)鍵.19、(1)反比例函數(shù)的表達(dá)式y(tǒng)=,(2)點(diǎn)P坐標(biāo)(,0),(3)S△PAB=1.1.【解析】(1)把點(diǎn)A(1,a)代入一次函數(shù)中可得到A點(diǎn)坐標(biāo),再把A點(diǎn)坐標(biāo)代入反比例解析式中即可得到反比例函數(shù)的表達(dá)式;(2)作點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn)D,連接AD交x軸于點(diǎn)P,此時(shí)PA+PB的值最小.由B可知D點(diǎn)坐標(biāo),再由待定系數(shù)法求出直線AD的解析式,即可得到點(diǎn)P的坐標(biāo);(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點(diǎn)A(1,a)代入一次函數(shù)y=﹣x+4,得a=﹣1+4,

解得a=3,

∴A(1,3),

點(diǎn)A(1,3)代入反比例函數(shù)y=,

得k=3,

∴反比例函數(shù)的表達(dá)式y(tǒng)=,

(2)把B(3,b)代入y=得,b=1∴點(diǎn)B坐標(biāo)(3,1);作點(diǎn)B作關(guān)于x軸的對(duì)稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,此時(shí)PA+PB的值最小,

∴D(3,﹣1),設(shè)直線AD的解析式為y=mx+n,

把A,D兩點(diǎn)代入得,,

解得m=﹣2,n=1,

∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,

∴點(diǎn)P坐標(biāo)(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點(diǎn)晴:本題是一道一次函數(shù)與反比例函數(shù)的綜合題,并與幾何圖形結(jié)合在一起來求有關(guān)于最值方面的問題.此類問題的重點(diǎn)是在于通過待定系數(shù)法求出函數(shù)圖象的解析式,再通過函數(shù)解析式反過來求坐標(biāo),為接下來求面積做好鋪墊.20、12【解析】解:∵,∴.∴.將代數(shù)式應(yīng)用完全平方公式和平方差公式展開后合并同類項(xiàng),將整體代入求值.21、(1)坡頂?shù)降孛娴木嚯x為米;移動(dòng)信號(hào)發(fā)射塔的高度約為米.【解析】

延長(zhǎng)BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由題意BH=PH.設(shè)BC=x.則x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根據(jù)tan76°=,構(gòu)建方程求出x即可.【詳解】延長(zhǎng)BC交OP于H.∵斜

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論