(課標專用 5年高考3年模擬A版)高考數(shù)學 專題六 數(shù)列 3 等比數(shù)列及其前n項和試題 理-人教版高三數(shù)學試題_第1頁
(課標專用 5年高考3年模擬A版)高考數(shù)學 專題六 數(shù)列 3 等比數(shù)列及其前n項和試題 理-人教版高三數(shù)學試題_第2頁
(課標專用 5年高考3年模擬A版)高考數(shù)學 專題六 數(shù)列 3 等比數(shù)列及其前n項和試題 理-人教版高三數(shù)學試題_第3頁
(課標專用 5年高考3年模擬A版)高考數(shù)學 專題六 數(shù)列 3 等比數(shù)列及其前n項和試題 理-人教版高三數(shù)學試題_第4頁
(課標專用 5年高考3年模擬A版)高考數(shù)學 專題六 數(shù)列 3 等比數(shù)列及其前n項和試題 理-人教版高三數(shù)學試題_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

等比數(shù)列及其前n項和挖命題【考情探究】考點內(nèi)容解讀5年考情預測熱度考題示例考向關聯(lián)考點1.等比數(shù)列的通項公式與前n項和公式①理解等比數(shù)列的概念.②掌握等比數(shù)列的通項公式與前n項和公式.③能在具體的問題情境中識別數(shù)列的等比關系,并能用有關知識解決相應的問題.④了解等比數(shù)列與指數(shù)函數(shù)的關系.2018課標Ⅲ,17,12分等比數(shù)列的通項公式及前n項和公式指數(shù)的運算★★★2017課標Ⅱ,3,5分等比數(shù)列的前n項和公式數(shù)學文化為背景的應用問題2016課標Ⅰ,15,5分等比數(shù)列的通項公式最值問題2.等比數(shù)列的性質(zhì)2016課標Ⅲ,17,12分等比數(shù)列的判定由an與Sn的關系求數(shù)列的通項公式2015課標Ⅱ,4,5分等比數(shù)列的通項公式數(shù)列的概念及其表示分析解讀本節(jié)是高考的考查熱點,主要考查等比數(shù)列的基本運算和性質(zhì),等比數(shù)列的通項公式和前n項和公式,尤其要注意以數(shù)學文化為背景的數(shù)列題,題型既有選擇題、填空題,也有解答題.考查學生的數(shù)學運算和邏輯推理能力以及學生對函數(shù)與方程、轉(zhuǎn)化與化歸和分類討論思想的應用.破考點【考點集訓】考點一等比數(shù)列的通項公式與前n項和公式1.(2018河南開封一模,5)已知等比數(shù)列{an}的前n項和為Sn,且9S3=S6,a2=1,則a1=()A.12B.22C.答案A2.(2018陜西延安黃陵中學(重點班)第一次大檢測,10)已知公比不為1的等比數(shù)列{an}的前n項和為Sn,且滿足a2,2a5,3a8成等差數(shù)列,則3SA.134B.1312C.9答案C3(2018天津濱海新區(qū)七所重點學校聯(lián)考,11)等比數(shù)列{an}中,各項都是正數(shù),且a1,12a3,2a2成等差數(shù)列,則a13+答案2-1考點二等比數(shù)列的性質(zhì)1.(2018安徽馬鞍山第二次教學質(zhì)量監(jiān)測,5)已知等比數(shù)列{an}滿足a1=1,a3·a5=4(a4-1),則a7的值為()A.2B.4C.92答案B2.(2017福建4月模擬,6)已知遞增的等比數(shù)列{an}的公比為q,其前n項和Sn<0,則()A.a1<0,0<q<1B.a1<0,q>1C.a1>0,0<q<1D.a1>0,q>1答案A3.設等比數(shù)列{an}的前n項和為Sn,若S6S3A.2B.73C.8答案B 煉技法【方法集訓】方法等比數(shù)列的判定與證明1.下列結(jié)論正確的是()A.若數(shù)列{an}的前n項和Sn=n2+n+1,則{an}為等差數(shù)列B.若數(shù)列{an}的前n項和Sn=2n-2,則{an}為等比數(shù)列C.非零實數(shù)a,b,c不全相等,若a,b,c成等差數(shù)列,則1a,1b,D.非零實數(shù)a,b,c不全相等,若a,b,c成等比數(shù)列,則1a,1b,答案D2.(2018河南信陽模擬,17)已知數(shù)列{an}滿足a1=1,an+1=2an+λ(λ為常數(shù)).(1)試探究數(shù)列{an+λ}是不是等比數(shù)列,并求an;(2)當λ=1時,求數(shù)列{n(an+λ)}的前n項和Tn.解析(1)因為an+1=2an+λ,所以an+1+λ=2(an+λ).又a1=1,所以當λ=-1時,a1+λ=0,數(shù)列{an+λ}不是等比數(shù)列,此時an+λ=an-1=0,即an=1;當λ≠-1時,a1+λ≠0,所以an+λ≠0,所以數(shù)列{an+λ}是以1+λ為首項,2為公比的等比數(shù)列,此時an+λ=(1+λ)2n-1,即an=(1+λ)2n-1-λ.(2)由(1)知an=2n-1,所以n(an+1)=n×2n,Tn=2+2×22+3×23+…+n×2n①,2Tn=22+2×23+3×24+…+n×2n+1②,①-②得:-Tn=2+22+23+…+2n-n×2n+1=2(1-2n)1-2所以Tn=(n-1)2n+1+2.過專題【五年高考】A組統(tǒng)一命題·課標卷題組考點一等比數(shù)列的通項公式與前n項和公式1.(2017課標Ⅱ,3,5分)我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈()A.1盞B.3盞C.5盞D.9盞答案B2.(2015課標Ⅱ,4,5分)已知等比數(shù)列{an}滿足a1=3,a1+a3+a5=21,則a3+a5+a7=()A.21B.42C.63D.84答案B3.(2018課標Ⅲ,17,12分)等比數(shù)列{an}中,a1=1,a5=4a3.(1)求{an}的通項公式;(2)記Sn為{an}的前n項和.若Sm=63,求m.解析(1)設{an}的公比為q,由題設得an=qn-1.由已知得q4=4q2,解得q=0(舍去)或q=-2或q=2.故an=(-2)n-1或an=2n-1.(2)若an=(-2)n-1,則Sn=1-(-由Sm=63得(-2)m=-188.此方程沒有正整數(shù)解.若an=2n-1,則Sn=2n-1.由Sm=63得2m=64,解得m=6.綜上,m=6.考點二等比數(shù)列的性質(zhì)(2016課標Ⅰ,15,5分)設等比數(shù)列{an}滿足a1+a3=10,a2+a4=5,則a1a2…an的最大值為.

答案64B組自主命題·省(區(qū)、市)卷題組考點一等比數(shù)列的通項公式與前n項和公式1.(2018北京,4,5分)“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于122A.32fB.322fC.12答案D2.(2017江蘇,9,5分)等比數(shù)列{an}的各項均為實數(shù),其前n項和為Sn.已知S3=74,S6=634,則a8=答案32考點二等比數(shù)列的性質(zhì)1.(2016天津,5,5分)設{an}是首項為正數(shù)的等比數(shù)列,公比為q,則“q<0”是“對任意的正整數(shù)n,a2n-1+a2n<0”的()A.充要條件B.充分而不必要條件C.必要而不充分條件D.既不充分也不必要條件答案C2.(2014廣東,13,5分)若等比數(shù)列{an}的各項均為正數(shù),且a10a11+a9a12=2e5,則lna1+lna2+…+lna20=.

答案50C組教師專用題組考點一等比數(shù)列的通項公式與前n項和公式1.(2014重慶,2,5分)對任意等比數(shù)列{an},下列說法一定正確的是()A.a1,a3,a9成等比數(shù)列B.a2,a3,a6成等比數(shù)列C.a2,a4,a8成等比數(shù)列D.a3,a6,a9成等比數(shù)列答案D2.(2013課標Ⅱ,3,5分,0.859)等比數(shù)列{an}的前n項和為Sn,已知S3=a2+10a1,a5=9,則a1=()A.13B.-13C.1答案C3.(2012課標Ⅰ,5,5分)已知{an}為等比數(shù)列,a4+a7=2,a5a6=-8,則a1+a10=()A.7B.5C.-5D.-7答案D4.(2017北京,10,5分)若等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=b1=-1,a4=b4=8,則a2b2答案15.(2015湖南,14,5分)設Sn為等比數(shù)列{an}的前n項和.若a1=1,且3S1,2S2,S3成等差數(shù)列,則an=.

答案3n-16.(2014天津,11,5分)設{an}是首項為a1,公差為-1的等差數(shù)列,Sn為其前n項和.若S1,S2,S4成等比數(shù)列,則a1的值為.

答案-17.(2014安徽,12,5分)數(shù)列{an}是等差數(shù)列,若a1+1,a3+3,a5+5構(gòu)成公比為q的等比數(shù)列,則q=.

答案18.(2016四川,19,12分)已知數(shù)列{an}的首項為1,Sn為數(shù)列{an}的前n項和,Sn+1=qSn+1,其中q>0,n∈N*.(1)若2a2,a3,a2+2成等差數(shù)列,求數(shù)列{an}的通項公式;(2)設雙曲線x2-y2an2=1的離心率為en,且e2=53,證明:e1+e2解析(1)由已知,Sn+1=qSn+1,Sn+2=qSn+1+1,兩式相減得到an+2=qan+1,n≥1.又由S2=qS1+1得到a2=qa1,故an+1=qan對所有n≥1都成立.所以,數(shù)列{an}是首項為1,公比為q的等比數(shù)列.從而an=qn-1.由2a2,a3,a2+2成等差數(shù)列,可得2a3=3a2+2,即2q2=3q+2,則(2q+1)(q-2)=0,由已知,q>0,故q=2.所以an=2n-1(n∈N*).(2)證明:由(1)可知,an=qn-1.所以雙曲線x2-y2an2=1的離心率en=由e2=1+q2=53因為1+q2(k-1)>q2(k-1),所以1+q2(k-于是e1+e2+…+en>1+q+…+qn-1=qn故e1+e2+…+en>4n9.(2015江蘇,20,16分)設a1,a2,a3,a4是各項為正數(shù)且公差為d(d≠0)的等差數(shù)列.(1)證明:2a1,2a2,(2)是否存在a1,d,使得a1,a22,a3(3)是否存在a1,d及正整數(shù)n,k,使得a1n,a2n+解析(1)證明:因為2an+12an=2an+1-a(2)令a1+d=a,則a1,a2,a3,a4分別為a-d,a,a+d,a+2d(a>d,a>-2d,d≠0).假設存在a1,d,使得a1,a22,a3則a4=(a-d)(a+d)3,且(a+d)6=a2(a+2d)4.令t=da,則1=(1-t)(1+t)3且(1+t)6=(1+2t)4-1化簡得t3+2t2-2=0(*),且t2=t+1.將t2=t+1代入(*)式,得t(t+1)+2(t+1)-2=t2+3t=t+1+3t=4t+1=0,則t=-14顯然t=-14不是方程t2因此不存在a1,d,使得a1,a22,a3(3)假設存在a1,d及正整數(shù)n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次構(gòu)成等比數(shù)列,則a1n(a1+2d)n+2k=(a分別在兩個等式的兩邊同除以a12(并令t=da則(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k).將上述兩個等式兩邊取對數(shù),得(n+2k)ln(1+2t)=2(n+k)·ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t).化簡得2k[ln(1+2t)-ln(1+t)]=n[2ln(1+t)-ln(1+2t)],且3k[ln(1+3t)-ln(1+t)]=n[3ln(1+t)-ln(1+3t)].再將這兩式相除,化簡得ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t)(**).令g(t)=4ln(1+3t)ln(1+t)-ln(1+3t)ln(1+2t)-3ln(1+2t)·ln(1+t),則g'(t)=2[(令φ(t)=(1+3t)2ln(1+3t)-3(1+2t)2ln(1+2t)+3(1+t)2·ln(1+t),則φ'(t)=6[(1+3t)ln(1+3t)-2(1+2t)ln(1+2t)+(1+t)·ln(1+t)].令φ1(t)=φ'(t),則φ'1(t)=6[3ln(1+3t)-4ln(1+2t)+ln(1+t)].令φ2(t)=φ'1(t),則φ'2(t)=12(由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ'2(t)>0,知φ2(t),φ1(t),φ(t),g(t)在-1故g(t)只有唯一零點t=0,即方程(**)只有唯一解t=0,故假設不成立.所以不存在a1,d及正整數(shù)n,k,使得a1n,a2n+評析本題考查等差數(shù)列的定義、等比數(shù)列的運算和綜合應用,考查演繹推理、直接證明、間接證明等邏輯思維能力.10.(2015山東,18,12分)設數(shù)列{an}的前n項和為Sn.已知2Sn=3n+3.(1)求{an}的通項公式;(2)若數(shù)列{bn}滿足anbn=log3an,求{bn}的前n項和Tn.解析(1)因為2Sn=3n+3,所以2a1=3+3,故a1=3,當n>1時,2Sn-1=3n-1+3,此時2an=2Sn-2Sn-1=3n-3n-1=2×3n-1,即an=3n-1,所以an=3(2)因為anbn=log3an,所以b1=13當n>1時,bn=31-nlog33n-1=(n-1)·31-n.所以T1=b1=13當n>1時,Tn=b1+b2+b3+…+bn=13+[1×3-1+2×3-2+…+(n-1)×31-n所以3Tn=1+[1×30+2×3-1+…+(n-1)×32-n],兩式相減,得2Tn=23+(30+3-1+3-2+…+32-n)-(n-1)×3=23+1-31-n1所以Tn=1312-6經(jīng)檢驗,n=1時也適合.綜上可得Tn=1312-6n+311.(2014課標Ⅱ,17,12分,0.299)已知數(shù)列{an}滿足a1=1,an+1=3an+1.(1)證明an+1(2)證明1a1+1a2+…+解析(1)由an+1=3an+1得an+1+12=3a又a1+12=3所以an+1an+12=3n2,因此{an}的通項公式為an(2)由(1)知1an=因為當n≥1時,3n-1≥2×3n-1,所以13n-于是1a1+1a2+…+1an≤1+13所以1a1+1a2+…+評析本題考查了等比數(shù)列的定義、數(shù)列求和等問題,放縮法求和是本題的難點.考點二等比數(shù)列的性質(zhì)1.(2018浙江,10,4分)已知a1,a2,a3,a4成等比數(shù)列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,則()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4答案B2.(2014大綱全國,10,5分)等比數(shù)列{an}中,a4=2,a5=5,則數(shù)列{lgan}的前8項和等于()A.6B.5C.4D.3答案C3.(2015安徽,14,5分)已知數(shù)列{an}是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列{an}的前n項和等于.

答案2n-14.(2014江蘇,7,5分)在各項均為正數(shù)的等比數(shù)列{an}中,若a2=1,a8=a6+2a4,則a6的值是.

答案4【三年模擬】一、選擇題(每小題5分,共35分)1.(2019屆山東濟南第一中學高三期中考試,7)在等比數(shù)列{an}中,若a3,a7是方程x2+4x+2=0的兩根,則a5的值是()A.-2B.-2C.±2D.2答案B2.(2019屆安徽黃山11月“八校聯(lián)考”,7)設Sn是等比數(shù)列{an}的前n項和,S4=5S2,則a5A.±12B.±2C.±2或-1D.±1答案D3.(2018河南新鄉(xiāng)二模,6)在公比為q的正項等比數(shù)列{an}中,a4=4,則當2a2+a6取得最小值時,log2q=()A.14B.-14C.1答案A4.(2018福建廈門模擬,8)設等比數(shù)列{an}的前n項和為Sn,若Sn=2n+1+λ,則λ=()A.-2B.-1C.1D.2答案A5.(2018山東實驗中學診斷測試,7)中國古代數(shù)學名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我的羊所吃的禾苗只有馬的一半.”馬主人說:“我的馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人應償還a升,b升,c升,1斗為10升,則下列判斷正確的是()A.a,b,c依次成公比為2的等比數(shù)列,且a=50B.a,b,c依次成公比為2的等比數(shù)列,且c=50C.a,b,c依次成公比為12的等比數(shù)列,且a=D.a,b,c依次成公比為12的等比數(shù)列,且c=答案D6.(2017湖北六校聯(lián)合體4月模擬,10)在數(shù)列{an}中,a1=1,an+1=2an,則Sn=a12-a22+a32-A.13(2n-1)B.15(1-2C.13(4n-1)D.13(1-2答案B7.(2018湖南湘潭三模,9)已知等比數(shù)列{an}的前n項積為Tn,若a1=-24,a4=-89,則當TnA.2B.3C.4D.6答案C二、填空題(每小題5分,共15分)8.(2019屆河北衡水中學高三第一次摸底考試,14)已知數(shù)列{an},若數(shù)列{3n-1an}的前n項和Tn=15×6n-15,則a5的值為答案169.(2019屆廣東化州高三第一次模擬考試,16)已知函數(shù)f(x)=exex+1,數(shù)列{an}為等比數(shù)列,an>0,a1010=1,則f(lna1)+f(lna3)+…+f(lna答案201910.(2017江西仿真模擬,16)已知數(shù)列{an}的前n項和為Sn,且滿足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),若不等式λSn>an恒成立,則實數(shù)λ的取值范圍是.

答案(1,+∞)三、解答題(共25分)11.(2019屆江西九江高三第一次十校聯(lián)考,20)已知數(shù)列{an}滿足an+1-an-1=2(an+an-1)(n≥2),a1=1,a2=7,令bn=an+1+an.(1)求證數(shù)列{bn}為等比數(shù)列,并求{bn}的通項公式;(2)求數(shù)列{an}的前n項和Sn.解析(1)∵a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論