廣東省廣州白云區(qū)2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第1頁(yè)
廣東省廣州白云區(qū)2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第2頁(yè)
廣東省廣州白云區(qū)2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第3頁(yè)
廣東省廣州白云區(qū)2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第4頁(yè)
廣東省廣州白云區(qū)2023-2024學(xué)年中考三模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省廣州白云區(qū)2023-2024學(xué)年中考三模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.小明解方程的過程如下,他的解答過程中從第()步開始出現(xiàn)錯(cuò)誤.解:去分母,得1﹣(x﹣2)=1①去括號(hào),得1﹣x+2=1②合并同類項(xiàng),得﹣x+3=1③移項(xiàng),得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④2.如圖,在中,點(diǎn)D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個(gè)A.1 B.2 C.3 D.43.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠14.觀察下列圖形,則第n個(gè)圖形中三角形的個(gè)數(shù)是()A.2n+2 B.4n+4 C.4n﹣4 D.4n5.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個(gè)扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π6.已知拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個(gè)公共點(diǎn),其橫坐標(biāo)為1,則一次函數(shù)y=bx+ac的圖象可能是(

)A.

B.

C.

D.7.如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′,連接CC′.若∠CC′B′=32°,則∠B的大小是()A.32° B.64° C.77° D.87°8.如圖所示,在平面直角坐標(biāo)系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△CP3D,依此類推,則旋轉(zhuǎn)第2017次后,得到的等腰直角三角形的直角頂點(diǎn)P2018的坐標(biāo)為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)9.將一圓形紙片對(duì)折后再對(duì)折,得到下圖,然后沿著圖中的虛線剪開,得到兩部分,其中一部分展開后的平面圖形是()A. B. C. D.10.已知一次函數(shù)y=kx+b的圖象如圖,那么正比例函數(shù)y=kx和反比例函數(shù)y=在同一坐標(biāo)系中的圖象的形狀大致是()A. B.C. D.11.的相反數(shù)是A. B.2 C. D.12.如圖,已知正方形ABCD的邊長(zhǎng)為12,BE=EC,將正方形邊CD沿DE折疊到DF,延長(zhǎng)EF交AB于G,連接DG,現(xiàn)在有如下4個(gè)結(jié)論:①≌;②;③∠GDE=45°;④DG=DE在以上4個(gè)結(jié)論中,正確的共有()個(gè)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,正方形ABCD的邊長(zhǎng)為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.14.若式子有意義,則x的取值范圍是_____.15.一個(gè)扇形的圓心角為120°,弧長(zhǎng)為2π米,則此扇形的半徑是_____米.16.如圖,矩形ABCD面積為40,點(diǎn)P在邊CD上,PE⊥AC,PF⊥BD,足分別為E,F(xiàn).若AC=10,則PE+PF=_____.17.如圖,在△ABC中,點(diǎn)D、E分別在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,則BC=_____.18.如果,那么______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知邊長(zhǎng)為2a的正方形ABCD,對(duì)角線AC、BD交于點(diǎn)Q,對(duì)于平面內(nèi)的點(diǎn)P與正方形ABCD,給出如下定義:如果,則稱點(diǎn)P為正方形ABCD的“關(guān)聯(lián)點(diǎn)”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點(diǎn)”有_____;(2)已知點(diǎn)E的橫坐標(biāo)是m,若點(diǎn)E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對(duì)角線交點(diǎn)Q的橫坐標(biāo)是n,直線與x軸、y軸分別相交于M、N兩點(diǎn).如果線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求n的取值范圍.20.(6分)某商場(chǎng)服裝部為了調(diào)動(dòng)營(yíng)業(yè)員的積極性,決定實(shí)行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對(duì)營(yíng)業(yè)員進(jìn)行適當(dāng)?shù)莫?jiǎng)勵(lì).為了確定一個(gè)適當(dāng)?shù)脑落N售目標(biāo),商場(chǎng)服裝部統(tǒng)計(jì)了每位營(yíng)業(yè)員在某月的銷售額(單位:萬元),數(shù)據(jù)如下:171816132415282618192217161932301614152615322317151528281619對(duì)這30個(gè)數(shù)據(jù)按組距3進(jìn)行分組,并整理、描述和分析如下.頻數(shù)分布表組別一二三四五六七銷售額頻數(shù)79322數(shù)據(jù)分析表平均數(shù)眾數(shù)中位數(shù)20.318請(qǐng)根據(jù)以上信息解答下列問題:填空:a=,b=,c=;若將月銷售額不低于25萬元確定為銷售目標(biāo),則有位營(yíng)業(yè)員獲得獎(jiǎng)勵(lì);若想讓一半左右的營(yíng)業(yè)員都能達(dá)到銷售目標(biāo),你認(rèn)為月銷售額定為多少合適?說明理由.21.(6分)一輛汽車,新車購(gòu)買價(jià)30萬元,第一年使用后折舊,以后該車的年折舊率有所變化,但它在第二、三年的年折舊率相同.已知在第三年年末,這輛車折舊后價(jià)值為萬元,求這輛車第二、三年的年折舊率.22.(8分)如圖,反比例y=的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)交于A(4,a).(1)求一次函數(shù)的解析式;(2)若直線x=n(0<n<4)與反比例函數(shù)和一次函數(shù)的圖象分別交于點(diǎn)B,C,連接AB,若△ABC是等腰直角三角形,求n的值.23.(8分)綜合與探究如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸分別交于點(diǎn)A(﹣2,0),B(4,0),與y軸交于點(diǎn)C,點(diǎn)D是y軸負(fù)半軸上一點(diǎn),直線BD與拋物線y=ax2+bx+3在第三象限交于點(diǎn)E(﹣4,y)點(diǎn)F是拋物線y=ax2+bx+3上的一點(diǎn),且點(diǎn)F在直線BE上方,將點(diǎn)F沿平行于x軸的直線向右平移m個(gè)單位長(zhǎng)度后恰好落在直線BE上的點(diǎn)G處.(1)求拋物線y=ax2+bx+3的表達(dá)式,并求點(diǎn)E的坐標(biāo);(2)設(shè)點(diǎn)F的橫坐標(biāo)為x(﹣4<x<4),解決下列問題:①當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點(diǎn)F作x軸的垂線FP,交直線BE于點(diǎn)P,垂足為F,連接FD.是否存在點(diǎn)F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點(diǎn)F的坐標(biāo);若不存在,說明理由.24.(10分)為了解某校初二學(xué)生每周上網(wǎng)的時(shí)間,兩位學(xué)生進(jìn)行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛好者中40名學(xué)生每周上網(wǎng)的時(shí)間;小杰從全校400名初二學(xué)生中隨機(jī)抽取了40名學(xué)生,調(diào)查了每周上網(wǎng)的時(shí)間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示.時(shí)間段(小時(shí)/周)小麗抽樣(人數(shù))小杰抽樣(人數(shù))0~16221~210102~31663~482(1)你認(rèn)為哪位學(xué)生抽取的樣本不合理?請(qǐng)說明理由.專家建議每周上網(wǎng)2小時(shí)以上(含2小時(shí))的學(xué)生應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,估計(jì)該校全體初二學(xué)生中有多少名學(xué)生應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間.25.(10分)如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以點(diǎn)為圓心,8為半徑的圓與軸交于,兩點(diǎn),過作直線與軸負(fù)方向相交成的角,且交軸于點(diǎn),以點(diǎn)為圓心的圓與軸相切于點(diǎn).(1)求直線的解析式;(2)將以每秒1個(gè)單位的速度沿軸向左平移,當(dāng)?shù)谝淮闻c外切時(shí),求平移的時(shí)間.26.(12分)隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已經(jīng)成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設(shè)他出地鐵的站點(diǎn)與文化宮距離為x(單位:千米),乘坐地鐵的時(shí)間(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:地鐵站ABCDEX(千米)891011.513(分鐘)1820222528(1)求關(guān)于x的函數(shù)表達(dá)式;李華騎單車的時(shí)間(單位:分鐘)也受x的影響,其關(guān)系可以用來描述.請(qǐng)問:李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時(shí)間最短?并求出最短時(shí)間.27.(12分)如圖所示,點(diǎn)C在線段AB上,AC=8cm,CB=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).求線段MN的長(zhǎng).若C為線段AB上任意一點(diǎn),滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長(zhǎng)度嗎?并說明理由.若C在線段AB的延長(zhǎng)線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點(diǎn),你能猜想出MN的長(zhǎng)度嗎?請(qǐng)畫出圖形,寫出你的結(jié)論,并說明理由.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

根據(jù)解分式方程的方法可以判斷哪一步是錯(cuò)誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯(cuò)誤,故選A.【點(diǎn)睛】本題考查解分式方程,解答本題的關(guān)鍵是明確解分式方程的方法.2、D【解析】

先由兩組對(duì)邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當(dāng)∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個(gè)角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對(duì)角相等,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等又得到一對(duì)角相等,等量代換可得∠EAD=∠EDA,利用等角對(duì)等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進(jìn)而得到正確說法的個(gè)數(shù).【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項(xiàng)①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項(xiàng)②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項(xiàng)③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項(xiàng)④正確,則其中正確的個(gè)數(shù)有4個(gè).故選D.【點(diǎn)睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識(shí)有:平行線的性質(zhì),角平分線的定義,以及等腰三角形的判定與性質(zhì),熟練掌握平行四邊形、矩形及菱形的判定與性質(zhì)是解本題的關(guān)鍵.3、D【解析】試題解析:由題意可知:x-1≠0,

x≠1

故選D.4、D【解析】試題分析:由已知的三個(gè)圖可得到一般的規(guī)律,即第n個(gè)圖形中三角形的個(gè)數(shù)是4n,根據(jù)一般規(guī)律解題即可.解:根據(jù)給出的3個(gè)圖形可以知道:第1個(gè)圖形中三角形的個(gè)數(shù)是4,第2個(gè)圖形中三角形的個(gè)數(shù)是8,第3個(gè)圖形中三角形的個(gè)數(shù)是12,從而得出一般的規(guī)律,第n個(gè)圖形中三角形的個(gè)數(shù)是4n.故選D.考點(diǎn):規(guī)律型:圖形的變化類.5、B【解析】

先依據(jù)勾股定理求得AB的長(zhǎng),從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個(gè)圓的面積的.【詳解】在△ABC中,依據(jù)勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【點(diǎn)睛】本題主要考查的是相切兩圓的性質(zhì)、勾股定理的應(yīng)用、扇形面積的計(jì)算,求得兩個(gè)扇形的半徑和圓心角之和是解題的關(guān)鍵.6、B【解析】分析:根據(jù)拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個(gè)公共點(diǎn),可得b>0,根據(jù)交點(diǎn)橫坐標(biāo)為1,可得a+b+c=b,可得a,c互為相反數(shù),依此可得一次函數(shù)y=bx+ac的圖象.詳解:∵拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個(gè)公共點(diǎn),∴b>0,∵交點(diǎn)橫坐標(biāo)為1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函數(shù)y=bx+ac的圖象經(jīng)過第一、三、四象限.故選B.點(diǎn)睛:考查了一次函數(shù)的圖象,反比例函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),關(guān)鍵是得到b>0,ac<0.7、C【解析】試題分析:由旋轉(zhuǎn)的性質(zhì)可知,AC=AC′,∵∠CAC′=90°,可知△CAC′為等腰直角三角形,則∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故選C.考點(diǎn):旋轉(zhuǎn)的性質(zhì).8、D【解析】

根據(jù)題意可以求得P1,點(diǎn)P2,點(diǎn)P3的坐標(biāo),從而可以發(fā)現(xiàn)其中的變化的規(guī)律,從而可以求得P2018的坐標(biāo),本題得以解決.【詳解】解:由題意可得,

點(diǎn)P1(1,1),點(diǎn)P2(3,-1),點(diǎn)P3(5,1),

∴P2018的橫坐標(biāo)為:2×2018-1=4035,縱坐標(biāo)為:-1,

即P2018的坐標(biāo)為(4035,-1),

故選:D.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)變化規(guī)律,解答本題的關(guān)鍵是發(fā)現(xiàn)各點(diǎn)的變化規(guī)律,求出相應(yīng)的點(diǎn)的坐標(biāo).9、C【解析】

嚴(yán)格按照?qǐng)D中的方法親自動(dòng)手操作一下,即可很直觀地呈現(xiàn)出來.【詳解】根據(jù)題意知,剪去的紙片一定是一個(gè)四邊形,且對(duì)角線互相垂直.故選C.【點(diǎn)睛】本題主要考查學(xué)生的動(dòng)手能力及空間想象能力.對(duì)于此類問題,學(xué)生只要親自動(dòng)手操作,答案就會(huì)很直觀地呈現(xiàn).10、C【解析】試題分析:如圖所示,由一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限,可得k>1,b<1.因此可知正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限,反比例函數(shù)y=的圖象經(jīng)過第二、四象限.綜上所述,符合條件的圖象是C選項(xiàng).故選C.考點(diǎn):1、反比例函數(shù)的圖象;2、一次函數(shù)的圖象;3、一次函數(shù)圖象與系數(shù)的關(guān)系11、B【解析】

根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因?yàn)?2+2=0,所以﹣2的相反數(shù)是2,故選B.【點(diǎn)睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.12、C【解析】【分析】根據(jù)正方形的性質(zhì)和折疊的性質(zhì)可得AD=DF,∠A=∠GFD=90°,于是根據(jù)“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE為直角三角形,可通過勾股定理列方程求出AG=4,BG=8,根據(jù)全等三角形性質(zhì)可求得∠GDE==45?,再抓住△BEF是等腰三角形,而△GED顯然不是等腰三角形,判斷④是錯(cuò)誤的.【詳解】由折疊可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正確;∵正方形邊長(zhǎng)是12,∴BE=EC=EF=6,設(shè)AG=FG=x,則EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正確;∵△ADG≌△FDG,△DCE≌△DFE,∴∠ADG=∠FDG,∠FDE=∠CDE∴∠GDE==45?.③正確;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④錯(cuò)誤;∴正確說法是①②③故選:C【點(diǎn)睛】本題綜合性較強(qiáng),考查了翻折變換的性質(zhì)和正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,有一定的難度.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、2﹣【解析】

過點(diǎn)F作FE⊥AD于點(diǎn)E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據(jù)勾股定理求出EF的長(zhǎng),由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據(jù)S陰影=2(S扇形BAF-S弓形AF)即可得出結(jié)論【詳解】如圖所示,過點(diǎn)F作FE⊥AD于點(diǎn)E,∵正方形ABCD的邊長(zhǎng)為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【點(diǎn)睛】本題考查了扇形的面積公式和長(zhǎng)方形性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)圖形的對(duì)稱性分析,主要考查學(xué)生的計(jì)算能力.14、x≥﹣2且x≠1.【解析】由知,∴,又∵在分母上,∴.故答案為且.15、1【解析】

根據(jù)弧長(zhǎng)公式l=nπr180,可得r=【詳解】解:∵l=nπr∴r=180lnπ=故答案為:1.【點(diǎn)睛】考查了弧長(zhǎng)的計(jì)算,解答本題的關(guān)鍵是掌握弧長(zhǎng)公式:l=nπr180(弧長(zhǎng)為l,圓心角度數(shù)為n,圓的半徑為16、4【解析】

由矩形的性質(zhì)可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【詳解】解:如圖,設(shè)AC與BD的交點(diǎn)為O,連接PO,

∵四邊形ABCD是矩形

∴AO=CO=5=BO=DO,

∴S△DCO=S矩形ABCD=10,

∵S△DCO=S△DPO+S△PCO,

∴10=×DO×PF+×OC×PE

∴20=5PF+5PE

∴PE+PF=4

故答案為4【點(diǎn)睛】本題考查了矩形的性質(zhì),利用三角形的面積關(guān)系解決問題是本題的關(guān)鍵.17、1【解析】

先由DE∥BC,可證得△ADE∽△ABC,進(jìn)而可根據(jù)相似三角形得到的比例線段求得BC的長(zhǎng).【詳解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案為:1.【點(diǎn)睛】考查了相似三角形的性質(zhì)和判定,關(guān)鍵是求出相似后得出比例式,在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.18、;【解析】

先對(duì)等式進(jìn)行轉(zhuǎn)換,再求解.【詳解】∵∴3x=5x-5y∴2x=5y∴【點(diǎn)睛】本題考查的是分式,熟練掌握分式是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)或;(3).【解析】

(1)正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),由此畫出圖形即可判斷;(2)因?yàn)镋是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,所以E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),因?yàn)镋在直線上,推出點(diǎn)E在線段FG上,求出點(diǎn)F、G的橫坐標(biāo),再根據(jù)對(duì)稱性即可解決問題;(3)因?yàn)榫€段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,分兩種情形:①如圖3中,MN與小⊙Q相切于點(diǎn)F,求出此時(shí)點(diǎn)Q的橫坐標(biāo);②M如圖4中,落在大⊙Q上,求出點(diǎn)Q的橫坐標(biāo)即可解決問題;【詳解】(1)由題意正方形ABCD的“關(guān)聯(lián)點(diǎn)”中正方形的內(nèi)切圓和外切圓之間(包括兩個(gè)圓上的點(diǎn)),觀察圖象可知:正方形ABCD的“關(guān)聯(lián)點(diǎn)”為P2,P3;(2)作正方形ABCD的內(nèi)切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,∴E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個(gè)圓上的點(diǎn)),∵點(diǎn)E在直線上,∴點(diǎn)E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對(duì)稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,①M(fèi)N與小⊙Q相切于點(diǎn)F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點(diǎn)睛】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、直線與圓的位置關(guān)系等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)尋找特殊位置解決數(shù)學(xué)問題,屬于中考?jí)狠S題.20、(1)眾數(shù)為15;(2)3,4,15;8;(3)月銷售額定為18萬,有一半左右的營(yíng)業(yè)員能達(dá)到銷售目標(biāo).【解析】

根據(jù)數(shù)據(jù)可得到落在第四組、第六組的個(gè)數(shù)分別為3個(gè)、4個(gè),所以a=3,b=4,再根據(jù)數(shù)據(jù)可得15出現(xiàn)了5次,出現(xiàn)次數(shù)最多,所以眾數(shù)c=15;從頻數(shù)分布表中可以看出月銷售額不低于25萬元的營(yíng)業(yè)員有8個(gè),所以本小題答案為:8;本題是考查中位數(shù)的知識(shí),根據(jù)中位數(shù)可以讓一半左右的營(yíng)業(yè)員達(dá)到銷售目標(biāo).【詳解】解:(1)在范圍內(nèi)的數(shù)據(jù)有3個(gè),在范圍內(nèi)的數(shù)據(jù)有4個(gè),15出現(xiàn)的次數(shù)最大,則眾數(shù)為15;(2)月銷售額不低于25萬元為后面三組數(shù)據(jù),即有8位營(yíng)業(yè)員獲得獎(jiǎng)勵(lì);故答案為3,4,15;8;(3)想讓一半左右的營(yíng)業(yè)員都能達(dá)到銷售目標(biāo),我認(rèn)為月銷售額定為18萬合適.因?yàn)橹形粩?shù)為18,即大于18與小于18的人數(shù)一樣多,所以月銷售額定為18萬,有一半左右的營(yíng)業(yè)員能達(dá)到銷售目標(biāo).【點(diǎn)睛】本題考査了對(duì)樣本數(shù)據(jù)進(jìn)行分析的相關(guān)知識(shí),考查了頻數(shù)分布表、平均數(shù)、眾數(shù)和中位數(shù)的知識(shí),解題關(guān)鍵是根據(jù)數(shù)據(jù)整理成頻數(shù)分布表,會(huì)求數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù).并利用中位數(shù)的意義解決實(shí)際問題.21、這輛車第二、三年的年折舊率為.【解析】

設(shè)這輛車第二、三年的年折舊率為x,則第二年這就后的價(jià)格為30(1-20%)(1-x)元,第三年折舊后的而價(jià)格為30(1-20%)(1-x)2元,與第三年折舊后的價(jià)格為17.34萬元建立方程求出其解即可.【詳解】設(shè)這輛車第二、三年的年折舊率為,依題意,得整理得,解得,.因?yàn)檎叟f率不可能大于1,所以不合題意,舍去.所以答:這輛車第二、三年的年折舊率為.【點(diǎn)睛】本題是一道折舊率問題,考查了列一元二次方程解實(shí)際問題的運(yùn)用,解答本題時(shí)設(shè)出折舊率,表示出第三年的折舊后價(jià)格并運(yùn)用價(jià)格為11.56萬元建立方程是關(guān)鍵.22、(1)y=x﹣3(2)1【解析】

(1)由已知先求出a,得出點(diǎn)A的坐標(biāo),再把A的坐標(biāo)代入一次函數(shù)y=kx-3求出k的值即可求出一次函數(shù)的解析式;(2)易求點(diǎn)B、C的坐標(biāo)分別為(n,),(n,n-3).設(shè)直線y=x-3與x軸、y軸分別交于點(diǎn)D、E,易得OD=OE=3,那么∠OED=45°.根據(jù)平行線的性質(zhì)得到∠BCA=∠OED=45°,所以當(dāng)△ABC是等腰直角三角形時(shí)只有AB=AC一種情況.過點(diǎn)A作AF⊥BC于F,根據(jù)等腰三角形三線合一的性質(zhì)得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.【詳解】解:(1)∵反比例y=的圖象過點(diǎn)A(4,a),∴a==1,∴A(4,1),把A(4,1)代入一次函數(shù)y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函數(shù)的解析式為y=x﹣3;(2)由題意可知,點(diǎn)B、C的坐標(biāo)分別為(n,),(n,n﹣3).設(shè)直線y=x﹣3與x軸、y軸分別交于點(diǎn)D、E,如圖,當(dāng)x=0時(shí),y=﹣3;當(dāng)y=0時(shí),x=3,∴OD=OE,∴∠OED=45°.∵直線x=n平行于y軸,∴∠BCA=∠OED=45°,∵△ABC是等腰直角三角形,且0<n<4,∴只有AB=AC一種情況,過點(diǎn)A作AF⊥BC于F,則BF=FC,F(xiàn)(n,1),∴﹣1=1﹣(n﹣3),解得n1=1,n2=4,∵0<n<4,∴n2=4舍去,∴n的值是1.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,待定系數(shù)法求一次函數(shù)的解析式,等腰直角三角形的性質(zhì),難度適中.23、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標(biāo)為(﹣3,0)或(﹣3,).【解析】

(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達(dá)式,再將E點(diǎn)坐標(biāo)代入表達(dá)式求出y的值即可;(3)①設(shè)直線BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達(dá)式求出D點(diǎn)坐標(biāo),當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),可得G點(diǎn)坐標(biāo),GF∥x軸,故可得F的縱坐標(biāo),再將y=﹣2代入拋物線的解析式求解可得點(diǎn)F的坐標(biāo),再根據(jù)m=FG即可得m的值;②設(shè)點(diǎn)F與點(diǎn)G的坐標(biāo),根據(jù)m=FG列出方程化簡(jiǎn)可得出m的二次函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的圖象可得m的取值范圍;(2)分別分析當(dāng)點(diǎn)F在x軸的左側(cè)時(shí)與右側(cè)時(shí)的兩種情況,根據(jù)△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設(shè)出F,G點(diǎn)的坐標(biāo),再根據(jù)兩點(diǎn)關(guān)系列出等式化簡(jiǎn)求解即可得F的坐標(biāo).【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達(dá)式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點(diǎn)E的坐標(biāo)為(﹣4,﹣6).(3)①設(shè)直線BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達(dá)式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),G的坐標(biāo)為(0,﹣2).∵GF∥x軸,∴F的縱坐標(biāo)為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點(diǎn)F的坐標(biāo)為(﹣+3,﹣2).∴m=FG=﹣3.②設(shè)點(diǎn)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡(jiǎn)得,m=﹣x3+4,∵﹣<0,∴m有最大值,當(dāng)x=0時(shí),m的最大值為4.(2)當(dāng)點(diǎn)F在x軸的左側(cè)時(shí),如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點(diǎn)F的坐標(biāo)為(﹣3,0).當(dāng)點(diǎn)F在x軸的右側(cè)時(shí),如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點(diǎn)F的坐標(biāo)為(﹣3,).綜上所述,點(diǎn)F的坐標(biāo)為(﹣3,0)或(﹣3,).【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.24、(1)小麗;(2)80【解析】

解:(1)小麗;因?yàn)樗龥]有從全校初二學(xué)生中隨機(jī)進(jìn)行抽查,不具有隨機(jī)性與代表性.(2).答:該校全體初二學(xué)生中有80名同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間.25、(1)直線的解析式為:.(2)平移的時(shí)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論