




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省泰州市姜堰區(qū)2023-2024學年中考數(shù)學猜題卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若不等式組2x-1>3x≤a的整數(shù)解共有三個,則aA.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤62.下列計算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣63.如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°4.姜老師給出一個函數(shù)表達式,甲、乙、丙三位同學分別正確指出了這個函數(shù)的一個性質.甲:函數(shù)圖像經(jīng)過第一象限;乙:函數(shù)圖像經(jīng)過第三象限;丙:在每一個象限內(nèi),y值隨x值的增大而減?。鶕?jù)他們的描述,姜老師給出的這個函數(shù)表達式可能是()A. B. C. D.5.如圖,由四個正方體組成的幾何體的左視圖是()A. B. C. D.6.將一圓形紙片對折后再對折,得到下圖,然后沿著圖中的虛線剪開,得到兩部分,其中一部分展開后的平面圖形是()A. B. C. D.7.在快速計算法中,法國的“小九九”從“一一得一”到“五五二十五”和我國的“小九九”算法是完全一樣的,而后面“六到九”的運算就改用手勢了.如計算8×9時,左手伸出3根手指,右手伸出4根手指,兩只手伸出手指數(shù)的和為7,未伸出手指數(shù)的積為2,則8×9=10×7+2=1.那么在計算6×7時,左、右手伸出的手指數(shù)應該分別為()A.1,2 B.1,3C.4,2 D.4,38.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.9.將直線y=﹣x+a的圖象向右平移2個單位后經(jīng)過點A(3,3),則a的值為()A.4B.﹣4C.2D.﹣210.已知點A、B、C是直徑為6cm的⊙O上的點,且AB=3cm,AC=3cm,則∠BAC的度數(shù)為()A.15°
B.75°或15°
C.105°或15°
D.75°或105°二、填空題(共7小題,每小題3分,滿分21分)11.在不透明的口袋中有若干個完全一樣的紅色小球,現(xiàn)放入10個僅顏色不同的白色小球,均勻混合后,有放回的隨機摸取30次,有10次摸到白色小球,據(jù)此估計該口袋中原有紅色小球個數(shù)為_____.12.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點.此時,竹竿與這一點距離相距6m,與樹相距15m,則樹的高度為_________m.13.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則ba=_____.14.對甲、乙兩臺機床生產(chǎn)的零件進行抽樣測量,其平均數(shù)、方差計算結果如下:機床甲:=10,=0.02;機床乙:=10,=0.06,由此可知:________(填甲或乙)機床性能好.15.當x為_____時,分式的值為1.16.如圖,在△ABC中,AB=AC,以點C為圓心,以CB長為半徑作圓弧,交AC的延長線于點D,連結BD,若∠A=32°,則∠CDB的大小為_____度.17.不解方程,判斷方程2x2+3x﹣2=0的根的情況是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.(1)求拋物線的函數(shù)表達式;(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.①求S關于m的函數(shù)表達式,并求出m為何值時,S取得最大值;②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.19.(5分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與OD的延長線交于點P,PC、AB的延長線交于點F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長.20.(8分)21.(10分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.22.(10分)如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.求反比例函數(shù)的表達式;在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;若將△BOA繞點B按逆時針方向旋轉60°得到△BDE,直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.23.(12分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結BD、AD.求證;∠BDC=∠A.若∠C=45°,⊙O的半徑為1,直接寫出AC的長.24.(14分)在抗洪搶險救災中,某地糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉移到?jīng)]有受洪水威脅的A,B兩倉庫,已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為60噸,B庫的容量為120噸,從甲、乙兩庫到A、B兩庫的路程和運費如表(表中“元/噸?千米”表示每噸糧食運送1千米所需人民幣)路程(千米)運費(元/噸?千米)甲庫乙?guī)旒讕煲規(guī)霢庫20151212B庫2520108若從甲庫運往A庫糧食x噸,(1)填空(用含x的代數(shù)式表示):①從甲庫運往B庫糧食噸;②從乙?guī)爝\往A庫糧食噸;③從乙?guī)爝\往B庫糧食噸;(2)寫出將甲、乙兩庫糧食運往A、B兩庫的總運費y(元)與x(噸)的函數(shù)關系式,并求出當從甲、乙兩庫各運往A、B兩庫多少噸糧食時,總運費最省,最省的總運費是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
首先確定不等式組的解集,利用含a的式子表示,根據(jù)整數(shù)解的個數(shù)就可以確定有哪些整數(shù)解,根據(jù)解的情況可以得到關于a的不等式,從而求出a的范圍.【詳解】解不等式組得:2<x≤a,∵不等式組的整數(shù)解共有3個,∴這3個是3,4,5,因而5≤a<1.故選C.【點睛】本題考查了一元一次不等式組的整數(shù)解,正確解出不等式組的解集,確定a的范圍,是解答本題的關鍵.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.2、C【解析】
分別根據(jù)二次根式的定義,乘方的意義,負指數(shù)冪的意義以及絕對值的定義解答即可.【詳解】=3,故選項A不合題意;﹣32=﹣9,故選項B不合題意;(﹣3)﹣2=,故選項C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項D不合題意.故選C.【點睛】本題主要考查了二次根式的定義,乘方的定義、負指數(shù)冪的意義以及絕對值的定義,熟記定義是解答本題的關鍵.3、A【解析】
由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內(nèi)角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【點睛】本題考查了等腰三角形的性質.關鍵是利用等腰三角形的底角相等,外角的性質,內(nèi)角和定理,列方程求解.4、B【解析】y=3x的圖象經(jīng)過一三象限過原點的直線,y隨x的增大而增大,故選項A錯誤;y=的圖象在一、三象限,在每個象限內(nèi)y隨x的增大而減小,故選項B正確;y=?的圖象在二、四象限,故選項C錯誤;y=x2的圖象是頂點在原點開口向上的拋物線,在一、二象限,故選項D錯誤;故選B.5、B【解析】從左邊看可以看到兩個小正方形摞在一起,故選B.6、C【解析】
嚴格按照圖中的方法親自動手操作一下,即可很直觀地呈現(xiàn)出來.【詳解】根據(jù)題意知,剪去的紙片一定是一個四邊形,且對角線互相垂直.故選C.【點睛】本題主要考查學生的動手能力及空間想象能力.對于此類問題,學生只要親自動手操作,答案就會很直觀地呈現(xiàn).7、A【解析】試題分析:通過猜想得出數(shù)據(jù),再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和為3×10=30,30+4×3=42,故選A.點評:此題是定義新運算題型.通過閱讀規(guī)則,得出一般結論.解題關鍵是對號入座不要找錯對應關系.8、A【解析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.9、A【解析】
直接根據(jù)“左加右減”的原則求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【詳解】由“右加左減”的原則可知,將直線y=-x+b向右平移2個單位所得直線的解析式為:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故選A.【點睛】本題考查了一次函數(shù)圖象的平移,一次函數(shù)圖象的平移規(guī)律是:①y=kx+b向左平移m個單位,是y=k(x+m)+b,向右平移m個單位是y=k(x-m)+b,即左右平移時,自變量x左加右減;②y=kx+b向上平移n個單位,是y=kx+b+n,向下平移n個單位是y=kx+b-n,即上下平移時,b的值上加下減.10、C【解析】解:如圖1.∵AD為直徑,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,則∠BAC=105°;如圖2,.∵AD為直徑,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,則∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,則∠BAC=15°.故選C.點睛:本題考查的是圓周角定理和銳角三角函數(shù)的知識,掌握直徑所對的圓周角是直徑和熟記特殊角的三角函數(shù)值是解題的關鍵,注意分情況討論思想的運用.二、填空題(共7小題,每小題3分,滿分21分)11、20【解析】
利用頻率估計概率,設原來紅球個數(shù)為x個,根據(jù)摸取30次,有10次摸到白色小球結合概率公式可得關于x的方程,解方程即可得.【詳解】設原來紅球個數(shù)為x個,則有=,解得,x=20,經(jīng)檢驗x=20是原方程的根.故答案為20.【點睛】本題考查了利用頻率估計概率和概率公式的應用,熟練掌握概率的求解方法以及分式方程的求解方法是解題的關鍵.12、7【解析】設樹的高度為m,由相似可得,解得,所以樹的高度為7m13、1【解析】
根據(jù)已知a<<b,結合a、b是兩個連續(xù)的整數(shù)可得a、b的值,即可求解.【詳解】解:∵a,b為兩個連續(xù)的整數(shù),且a<<b,∴a=2,b=3,∴ba=32=1.故答案為1.【點睛】此題考查的是如何根據(jù)無理數(shù)的范圍確定兩個有理數(shù)的值,題中根據(jù)的取值范圍,可以很容易得到其相鄰兩個整數(shù),再結合已知條件即可確定a、b的值,14、甲.【解析】試題分析:根據(jù)方差的意義可知,方差越小,穩(wěn)定性越好,由此即可求出答案.試題解析:因為甲的方差小于乙的方差,甲的穩(wěn)定性好,所以甲機床的性能好.故答案為甲.考點:1.方差;2.算術平均數(shù).15、2【解析】
分式的值是1的條件是,分子為1,分母不為1.【詳解】∵3x-6=1,
∴x=2,
當x=2時,2x+1≠1.
∴當x=2時,分式的值是1.
故答案為2.【點睛】本題考查的知識點是分式為1的條件,解題關鍵是注意的是分母不能是1.16、1【解析】
根據(jù)等腰三角形的性質以及三角形內(nèi)角和定理在△ABC中可求得∠ACB=∠ABC=74°,根據(jù)等腰三角形的性質以及三角形外角的性質在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.【詳解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=1°,故答案為1.【點睛】本題主要考查等腰三角形的性質,三角形外角的性質,掌握等邊對等角是解題的關鍵,注意三角形內(nèi)角和定理的應用.17、有兩個不相等的實數(shù)根.【解析】分析:先求一元二次方程的判別式,由△與0的大小關系來判斷方程根的情況.詳解:∵a=2,b=3,c=?2,∴∴一元二次方程有兩個不相等的實數(shù)根.故答案為有兩個不相等的實數(shù)根.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.三、解答題(共7小題,滿分69分)18、(1);(2)①,當m=5時,S取最大值;②滿足條件的點F共有四個,坐標分別為,,,,【解析】
(1)將A、C兩點坐標代入拋物線y=-x2+bx+c,即可求得拋物線的解析式;
(2)①先用m表示出QE的長度,進而求出三角形的面積S關于m的函數(shù);
②直接寫出滿足條件的F點的坐標即可,注意不要漏寫.【詳解】解:(1)將A、C兩點坐標代入拋物線,得,解得:,∴拋物線的解析式為y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,過點Q作QE⊥BC與E點,則sin∠ACB===,∴=,∴QE=(10﹣m),∴S=?CP?QE=m×(10﹣m)=﹣m2+3m;②∵S=?CP?QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴當m=5時,S取最大值;在拋物線對稱軸l上存在點F,使△FDQ為直角三角形,∵拋物線的解析式為y=﹣x2+x+8的對稱軸為x=,D的坐標為(3,8),Q(3,4),當∠FDQ=90°時,F(xiàn)1(,8),當∠FQD=90°時,則F2(,4),當∠DFQ=90°時,設F(,n),則FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F(xiàn)4(,6﹣),滿足條件的點F共有四個,坐標分別為F1(,8),F(xiàn)2(,4),F(xiàn)3(,6+),F(xiàn)4(,6﹣).【點睛】本題考查二次函數(shù)的綜合應用能力,其中涉及到的知識點有拋物線的解析式的求法拋物線的最值等知識點,是各地中考的熱點和難點,解題時注意數(shù)形結合數(shù)學思想的運用,同學們要加強訓練,屬于中檔題.19、(1)證明見解析(2)1【解析】
(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對應角相等,以及切線的性質定理可以得到:∠OCP=90°,即OC⊥PC,即可證得;(2)先證△OBC是等邊三角形得∠COB=60°,再由(1)中所證切線可得∠OCF=90°,結合半徑OC=1可得答案.【詳解】(1)連接OC.∵OD⊥AC,OD經(jīng)過圓心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切線,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切線.(2)∵OB=OC,∠OBC=60°,∴△OBC是等邊三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC?tan∠COB=1.【點睛】本題考查了切線的性質定理以及判定定理,以及直角三角形三角函數(shù)的應用,證明圓的切線的問題常用的思路是根據(jù)切線的判定定理轉化成證明垂直的問題.20、﹣2<x<2.【解析】
分別解不等式,進而得出不等式組的解集.【詳解】解①得:x<2解②得:x>﹣2.故不等式組的解集為:﹣2<x<2.【點睛】本題主要考查了解一元一次不等式組,正確掌握不等式組的解法是解題的關鍵.21、﹣6+2【解析】分析:直接利用二次根式的性質以及絕對值的性質和特殊角的三角函數(shù)值分別化簡求出答案.詳解:原式=1﹣6+﹣1+3×=﹣5+﹣1+=﹣6+2.點睛:此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關鍵.22、(1);(2)P(,0);(3)E(,﹣1),在.【解析】
(1)將點A(,1)代入,利用待定系數(shù)法即可求出反比例函數(shù)的表達式;(2)先由射影定理求出BC=3,那么B(,﹣3),計算求出S△AOB=××4=.則S△AOP=S△AOB=.設點P的坐標為(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根據(jù)旋轉的性質求出E點坐標為(﹣,﹣1),即可求解.【詳解】(1)∵點A(,1)在反比例函數(shù)的圖象上,∴k=×1=,∴反比例函數(shù)的表達式為;(2)∵A(,1),AB⊥x軸于點C,∴OC=,AC=1,由射影定理得=AC?BC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.設點P的坐標為(m,0),∴×|m|×1=,∴|m|=,∵P是x軸的負半軸上的點,∴m=﹣,∴點P的坐標為(,0);(3)點E在該反比例函數(shù)的圖象上,理由如下:∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵將△BOA繞點B按逆時針方向旋轉60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 11856.1-2025烈性酒質量要求第1部分:威士忌
- GB 19081-2025飼料加工系統(tǒng)粉塵防爆安全規(guī)范
- 勞動合同范本 派遣
- 養(yǎng)殖場清糞車購銷合同范本
- 區(qū)域銷售協(xié)議合同范本醫(yī)藥
- 包裝印刷公司采購合同范本
- 買宅地合同范例
- 上海住房合同范本
- 個人與團隊提成合同范本
- 線上按摩技師合同范本
- 部編版小學(2024版)小學道德與法治一年級下冊《有個新目標》-第一課時教學課件
- 稅法(第5版) 課件 第13章 印花稅
- 2024-2025學年廣州市高二語文上學期期末考試卷附答案解析
- 咖啡店合同咖啡店合作經(jīng)營協(xié)議
- 2025年山東鋁業(yè)職業(yè)學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 全套電子課件:技能成就夢想
- 2024年教育公共基礎知識筆記
- 2025年江蘇農(nóng)林職業(yè)技術學院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 異構數(shù)據(jù)融合技術-深度研究
- 北京市朝陽區(qū)2024-2025學年七年級上學期期末考試數(shù)學試卷(含答案)
- 2024年湖南汽車工程職業(yè)學院單招職業(yè)技能測試題庫標準卷
評論
0/150
提交評論