(浙教版)浙江省湖州八中重點(diǎn)達(dá)標(biāo)名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁(yè)
(浙教版)浙江省湖州八中重點(diǎn)達(dá)標(biāo)名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁(yè)
(浙教版)浙江省湖州八中重點(diǎn)達(dá)標(biāo)名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁(yè)
(浙教版)浙江省湖州八中重點(diǎn)達(dá)標(biāo)名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁(yè)
(浙教版)浙江省湖州八中重點(diǎn)達(dá)標(biāo)名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

(浙教版)浙江省湖州八中重點(diǎn)達(dá)標(biāo)名校2024屆中考考前最后一卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示的四張撲克牌背面完全相同,洗勻后背面朝上,則從中任意翻開一張,牌面數(shù)字是3的倍數(shù)的概率為()A. B. C. D.2.剪紙是我國(guó)傳統(tǒng)的民間藝術(shù).下列剪紙作品既不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形的是()A. B. C. D.3.一個(gè)幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長(zhǎng)方體 C.圓錐 D.立方體4.如圖圖形中是中心對(duì)稱圖形的是()A. B.C. D.5.下列計(jì)算或化簡(jiǎn)正確的是()A. B.C. D.6.﹣的絕對(duì)值是()A.﹣ B.﹣ C. D.7.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點(diǎn),DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶38.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④9.一條數(shù)學(xué)信息在一周內(nèi)被轉(zhuǎn)發(fā)了2180000次,將數(shù)據(jù)2180000用科學(xué)記數(shù)法表示為()A.2.18×106B.2.18×105C.21.8×106D.21.8×10510.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出下列四個(gè)結(jié)論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結(jié)論正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如果一個(gè)扇形的弧長(zhǎng)等于它的半徑,那么此扇形成為“等邊扇形”.則半徑為2的“等邊扇形”的面積為.12.如圖,是由形狀相同的正六邊形和正三角形鑲嵌而成的一組有規(guī)律的圖案,則第n個(gè)圖案中陰影小三角形的個(gè)數(shù)是.13.的系數(shù)是_____,次數(shù)是_____.14.已知一組數(shù)據(jù),,,,的平均數(shù)是,那么這組數(shù)據(jù)的方差等于________.15.如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是線段BO上的一個(gè)動(dòng)點(diǎn),點(diǎn)F為射線DC上一點(diǎn),若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數(shù)值是_____.16.如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,-3),動(dòng)點(diǎn)P在拋物線上.b=_________,c=_________,點(diǎn)B的坐標(biāo)為_____________;(直接填寫結(jié)果)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;過(guò)動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).三、解答題(共8題,共72分)17.(8分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點(diǎn)E,過(guò)點(diǎn)E作⊙O的切線交AB于點(diǎn)F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長(zhǎng).18.(8分)如圖,四邊形ABCD,AD∥BC,DC⊥BC于C點(diǎn),AE⊥BD于E,且DB=DA.求證:AE=CD.19.(8分)閱讀材料:已知點(diǎn)和直線,則點(diǎn)P到直線的距離d可用公式計(jì)算.例如:求點(diǎn)到直線的距離.

解:因?yàn)橹本€可變形為,其中,所以點(diǎn)到直線的距離為:.根據(jù)以上材料,求:點(diǎn)到直線的距離,并說(shuō)明點(diǎn)P與直線的位置關(guān)系;已知直線與平行,求這兩條直線的距離.20.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點(diǎn),OA=4,點(diǎn)D為拋物線的頂點(diǎn),并且直線y=kx+b與該拋物線相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,B點(diǎn)的橫坐標(biāo)是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)是t,△PAB的面積是S,求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當(dāng)PB∥CD時(shí),點(diǎn)Q是直線AB上一點(diǎn),若∠BPQ+∠CBO=180°,求Q點(diǎn)坐標(biāo).21.(8分)定義:若某拋物線上有兩點(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)y=ax2-2mx+c(a,m,c均為常數(shù)且ac≠0)是“完美拋物線”:(1)試判斷ac的符號(hào);(2)若c=-1,該二次函數(shù)圖象與y軸交于點(diǎn)C,且S△ABC=1.①求a的值;②當(dāng)該二次函數(shù)圖象與端點(diǎn)為M(-1,1)、N(3,4)的線段有且只有一個(gè)交點(diǎn)時(shí),求m的取值范圍.22.(10分)如圖1,在平行四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,經(jīng)過(guò)點(diǎn)O的直線與邊AB相交于點(diǎn)E,與邊CD相交于點(diǎn)F.(1)求證:OE=OF;(2)如圖2,連接DE,BF,當(dāng)DE⊥AB時(shí),在不添加其他輔助線的情況下,直接寫出腰長(zhǎng)等于BD的所有的等腰三角形.23.(12分)計(jì)算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.24.我們知道,平面內(nèi)互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構(gòu)成的是平面斜坐標(biāo)系,兩條數(shù)軸稱為斜坐標(biāo)系的坐標(biāo)軸,公共原點(diǎn)稱為斜坐標(biāo)系的原點(diǎn),如圖1,經(jīng)過(guò)平面內(nèi)一點(diǎn)P作坐標(biāo)軸的平行線PM和PN,分別交x軸和y軸于點(diǎn)M,N.點(diǎn)M、N在x軸和y軸上所對(duì)應(yīng)的數(shù)分別叫做P點(diǎn)的x坐標(biāo)和y坐標(biāo),有序?qū)崝?shù)對(duì)(x,y)稱為點(diǎn)P的斜坐標(biāo),記為P(x,y).(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點(diǎn)D,OA=2,OC=l.①點(diǎn)A、B、C在此斜坐標(biāo)系內(nèi)的坐標(biāo)分別為A,B,C.②設(shè)點(diǎn)P(x,y)在經(jīng)過(guò)O、B兩點(diǎn)的直線上,則y與x之間滿足的關(guān)系為.③設(shè)點(diǎn)Q(x,y)在經(jīng)過(guò)A、D兩點(diǎn)的直線上,則y與x之間滿足的關(guān)系為.(2)若ω=120°,O為坐標(biāo)原點(diǎn).①如圖3,圓M與y軸相切原點(diǎn)O,被x軸截得的弦長(zhǎng)OA=4,求圓M的半徑及圓心M的斜坐標(biāo).②如圖4,圓M的圓心斜坐標(biāo)為M(2,2),若圓上恰有兩個(gè)點(diǎn)到y(tǒng)軸的距離為1,則圓M的半徑r的取值范圍是.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)題意確定所有情況的數(shù)目,再確定符合條件的數(shù)目,根據(jù)概率的計(jì)算公式即可.【詳解】解:由題意可知,共有4種情況,其中是3的倍數(shù)的有6和9,∴是3的倍數(shù)的概率,故答案為:C.【點(diǎn)睛】本題考查了概率的計(jì)算,解題的關(guān)鍵是熟知概率的計(jì)算公式.2、A【解析】試題分析:根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的概念可知:選項(xiàng)A既不是中心對(duì)稱圖形,也不是軸對(duì)稱圖形,故本選項(xiàng)正確;選項(xiàng)B不是中心對(duì)稱圖形,是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;選項(xiàng)C既是中心對(duì)稱圖形,也是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;選項(xiàng)D既是中心對(duì)稱圖形,也是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.故選A.考點(diǎn):中心對(duì)稱圖形;軸對(duì)稱圖形.3、A【解析】

根據(jù)三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結(jié)構(gòu)特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關(guān)鍵.4、B【解析】

把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形.【詳解】解:根據(jù)中心對(duì)稱圖形的定義可知只有B選項(xiàng)是中心對(duì)稱圖形,故選擇B.【點(diǎn)睛】本題考察了中心對(duì)稱圖形的含義.5、D【解析】解:A.不是同類二次根式,不能合并,故A錯(cuò)誤;B.

,故B錯(cuò)誤;C.,故C錯(cuò)誤;D.,正確.故選D.6、C【解析】

根據(jù)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),可得答案.【詳解】│-│=,A錯(cuò)誤;│-│=,B錯(cuò)誤;││=,D錯(cuò)誤;││=,故選C.【點(diǎn)睛】本題考查了絕對(duì)值,解題的關(guān)鍵是掌握絕對(duì)值的概念進(jìn)行解題.7、A【解析】∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點(diǎn)晴:本題主要通過(guò)證出兩個(gè)三角形是相似三角形,再利用相似三角形的性質(zhì):相似三角形的面積之比等于對(duì)應(yīng)邊之比的平方,進(jìn)而將求面積比的問(wèn)題轉(zhuǎn)化為求邊之比的問(wèn)題,并通過(guò)含30度角的直角三角形三邊間的關(guān)系(銳角三角形函數(shù))即可得出對(duì)應(yīng)邊之比,進(jìn)而得到面積比.8、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當(dāng)四邊形是菱形時(shí),②和④成立.故選D.9、A【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】2180000的小數(shù)點(diǎn)向左移動(dòng)6位得到2.18,所以2180000用科學(xué)記數(shù)法表示為2.18×106,故選A.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.10、C【解析】

利用“角邊角”證明△APE和△CPF全等,根據(jù)全等三角形的可得AE=CF,再根據(jù)等腰直角三角形的定義得到△EFP是等腰直角三角形,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點(diǎn)P是BC的中點(diǎn),∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯(cuò)誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),根據(jù)同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關(guān)鍵,也是本題的突破點(diǎn).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】試題分析:根據(jù)題意可得圓心角的度數(shù)為:,則S==1.考點(diǎn):扇形的面積計(jì)算.12、4n﹣1.【解析】由圖可知:第一個(gè)圖案有陰影小三角形1個(gè),第二圖案有陰影小三角形1+4=6個(gè),第三個(gè)圖案有陰影小三角形1+8=11個(gè),···那么第n個(gè)就有陰影小三角形1+4(n﹣1)=4n﹣1個(gè).13、1【解析】

根據(jù)單項(xiàng)式系數(shù)及次數(shù)的定義進(jìn)行解答即可.【詳解】根據(jù)單項(xiàng)式系數(shù)和次數(shù)的定義可知,﹣的系數(shù)是,次數(shù)是1.【點(diǎn)睛】本題考查了單項(xiàng)式,熟知單項(xiàng)式中的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù),一個(gè)單項(xiàng)式中所有字母的指數(shù)的和叫做單項(xiàng)式的次數(shù)是解題的關(guān)鍵.14、5.2【解析】分析:首先根據(jù)平均數(shù)求出x的值,然后根據(jù)方差的計(jì)算法則進(jìn)行計(jì)算即可得出答案.詳解:∵平均數(shù)為6,∴(3+4+6+x+9)÷5=6,解得:x=8,∴方差為:.點(diǎn)睛:本題主要考查的是平均數(shù)和方差的計(jì)算法則,屬于基礎(chǔ)題型.明確計(jì)算公式是解決這個(gè)問(wèn)題的關(guān)鍵.15、2,3,1.【解析】分析:根據(jù)題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當(dāng)點(diǎn)E和點(diǎn)B重合時(shí),∠FBD=90°,∠BDC=30°,則EF=1;當(dāng)點(diǎn)E和點(diǎn)O重合時(shí),∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數(shù)值為2、3、1.點(diǎn)睛:本題主要考查的就是菱形的性質(zhì)以及直角三角形的勾股定理,屬于中等難度的題型.解決這個(gè)問(wèn)題的關(guān)鍵就是找出當(dāng)點(diǎn)E在何處時(shí)取到最大值和最小值,從而得出答案.16、(1),,(-1,0);(2)存在P的坐標(biāo)是或;(1)當(dāng)EF最短時(shí),點(diǎn)P的坐標(biāo)是:(,)或(,)【解析】

(1)將點(diǎn)A和點(diǎn)C的坐標(biāo)代入拋物線的解析式可求得b、c的值,然后令y=0可求得點(diǎn)B的坐標(biāo);(2)分別過(guò)點(diǎn)C和點(diǎn)A作AC的垂線,將拋物線與P1,P2兩點(diǎn)先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點(diǎn)坐標(biāo)即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點(diǎn)D的縱坐標(biāo),從而得到點(diǎn)P的縱坐標(biāo),然后由拋物線的解析式可求得點(diǎn)P的坐標(biāo).【詳解】解:(1)∵將點(diǎn)A和點(diǎn)C的坐標(biāo)代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點(diǎn)B的坐標(biāo)為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當(dāng)∠ACP1=90°.由(1)可知點(diǎn)A的坐標(biāo)為(1,0).設(shè)AC的解析式為y=kx﹣1.∵將點(diǎn)A的坐標(biāo)代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點(diǎn)P1的坐標(biāo)為(1,﹣4).②當(dāng)∠P2AC=90°時(shí).設(shè)AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點(diǎn)P2的坐標(biāo)為(﹣2,5).綜上所述,P的坐標(biāo)是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當(dāng)OD⊥AC時(shí),OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點(diǎn).又∵DF∥OC,∴DF=OC=,∴點(diǎn)P的縱坐標(biāo)是,∴,解得:x=,∴當(dāng)EF最短時(shí),點(diǎn)P的坐標(biāo)是:(,)或(,).三、解答題(共8題,共72分)17、(1)證明見(jiàn)解析;(2)4.8.【解析】

(1)連結(jié)OE,根據(jù)等腰三角形的性質(zhì)可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質(zhì)可得EF⊥OE,由此即可證得EF⊥AB;(2)連結(jié)BE,根據(jù)直徑所對(duì)的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質(zhì)求得AE=EC=8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【詳解】(1)證明:連結(jié)OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結(jié)BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【點(diǎn)睛】本題考查了切線的性質(zhì)定理、圓周角定理、等腰三角形的性質(zhì)與判定、勾股定理及直角三角形的兩種面積求法等知識(shí)點(diǎn),熟練運(yùn)算這些知識(shí)是解決問(wèn)題的關(guān)鍵.18、證明見(jiàn)解析.【解析】

由AD∥BC得∠ADB=∠DBC,根據(jù)已知證明△AED≌△DCB(AAS),即可解題.【詳解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于點(diǎn)C,AE⊥BD于點(diǎn)E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【點(diǎn)睛】本題考查了三角形全等的判定和性質(zhì),屬于簡(jiǎn)單題,證明三角形全等是解題關(guān)鍵.19、(1)點(diǎn)P在直線上,說(shuō)明見(jiàn)解析;(2).【解析】

解:(1)求:(1)直線可變?yōu)?,說(shuō)明點(diǎn)P在直線上;(2)在直線上取一點(diǎn)(0,1),直線可變?yōu)閯t,∴這兩條平行線的距離為.20、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;(3)Q(﹣,)【解析】

(1)根據(jù)題意可得A(-4,0)代入拋物線解析式可得a,求出拋物線解析式,根據(jù)B的橫坐標(biāo)可求B點(diǎn)坐標(biāo),把A,B坐標(biāo)代入直線解析式,可求k,b(2)過(guò)P點(diǎn)作PN⊥OA于N,交AB于M,過(guò)B點(diǎn)作BH⊥PN,設(shè)出P點(diǎn)坐標(biāo),可求出N點(diǎn)坐標(biāo),即可以用t表示S.(3)由PB∥CD,可求P點(diǎn)坐標(biāo),連接OP,交AC于點(diǎn)R,過(guò)P點(diǎn)作PN⊥OA于M,交AB于N,過(guò)D點(diǎn)作DT⊥OA于T,根據(jù)P的坐標(biāo),可得∠POA=45°,由OA=OC可得∠CAO=45°則PO⊥AB,根據(jù)拋物線的對(duì)稱性可知R在對(duì)稱軸上.設(shè)Q點(diǎn)坐標(biāo),根據(jù)△BOR∽△PQS,可求Q點(diǎn)坐標(biāo).【詳解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,當(dāng)x=﹣1時(shí),y=﹣1+4=3,∴B(﹣1,3),將A(﹣4,0)B(﹣1,3)代入函數(shù)解析式,得,解得,直線AB的解析式為y=x+4,∴k=1、a=2、b=4;(2)過(guò)P點(diǎn)作PN⊥OA于N,交AB于M,過(guò)B點(diǎn)作BH⊥PN,如圖1,由(1)知直線AB是y=x+4,拋物線是y=﹣x2﹣4x,∴當(dāng)x=t時(shí),yP=﹣t2﹣4t,yN=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,化簡(jiǎn),得s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,當(dāng)x=﹣2時(shí),y=4即D(﹣2,4),當(dāng)x=0時(shí),y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).當(dāng)y=3時(shí),x=﹣3,∴P(﹣3,3),連接OP,交AC于點(diǎn)R,過(guò)P點(diǎn)作PN⊥OA于M,交AB于N,過(guò)D點(diǎn)作DT⊥OA于T,如圖2,可證R在DT上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ=∠BCO+∠BOC過(guò)點(diǎn)Q作QS⊥PN,垂足是S,∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,可求BR=,OR=2,設(shè)Q點(diǎn)的橫坐標(biāo)是m,當(dāng)x=m時(shí)y=m+4,∴SQ=m+3,PS=﹣m﹣1∴,解得m=﹣.當(dāng)x=﹣時(shí),y=,Q(﹣,).【點(diǎn)睛】本題考查二次函數(shù)綜合題、一次函數(shù)的應(yīng)用、相似三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí),學(xué)會(huì)添加常用輔助線,構(gòu)造特殊四邊形解決問(wèn)題.21、(1)ac<3;(3)①a=1;②m>或m<.【解析】

(1)設(shè)A

(p,q).則B

(-p,-q),把A、B坐標(biāo)代入解析式可得方程組即可得到結(jié)論;

(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根據(jù)三角形的面積公式列方程即可得到結(jié)果;②由①可知:拋物線解析式為y=x3-3mx-1,根據(jù)M(-1,1)、N(3,4).得到這些MN的解析式y(tǒng)=x+(-1≤x≤3),聯(lián)立方程組得到x3-3mx-1=x+,故問(wèn)題轉(zhuǎn)化為:方程x3-(3m+)x-=3在-1≤x≤3內(nèi)只有一個(gè)解,建立新的二次函數(shù):y=x3-(3m+)x-,根據(jù)題意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程組即可得到結(jié)論.【詳解】(1)設(shè)A

(p,q).則B

(-p,-q),

把A、B坐標(biāo)代入解析式可得:,

∴3ap3+3c=3.即p3=?,

∴?≥3,

∵ac≠3,

∴?>3,

∴ac<3;

(3)∵c=-1,

∴p3=,a>3,且C(3,-1),

∴p=±,

①S△ABC=×3×1=1,

∴a=1;

②由①可知:拋物線解析式為y=x3-3mx-1,

∵M(jìn)(-1,1)、N(3,4).

∴MN:y=x+(-1≤x≤3),

依題,只需聯(lián)立在-1≤x≤3內(nèi)只有一個(gè)解即可,

∴x3-3mx-1=x+,

故問(wèn)題轉(zhuǎn)化為:方程x3-(3m+)x-=3在-1≤x≤3內(nèi)只有一個(gè)解,

建立新的二次函數(shù):y=x3-(3m+)x-,

∵△=(3m+)3+11>3且c=-<3,

∴拋物線y=x3?(3m+)x?與x軸有兩個(gè)交點(diǎn),且交y軸于負(fù)半軸.

不妨設(shè)方程x3?(3m+)x?=3的兩根分別為x1,x3.(x1<x3)

則x1+x3=3m+,x1x3=?

∵方程x3?(3m+)x?=3在-1≤x≤3內(nèi)只有一個(gè)解.

故分兩種情況討論:

(Ⅰ)若-1≤x1<3且x3>3:則.即:,

可得:m>.

(Ⅱ)若x1<-1且-1<x3≤3:則.即:,

可得:m<,

綜上所述,m>或m<.【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,一元二次方程根與系數(shù)的關(guān)系,三角形面積公式,正確的理解題意是解題的關(guān)鍵.22、(1)證明見(jiàn)解析;(2)△DOF,△FOB,△EOB,△DOE.【解析】

(1)由四邊形ABCD是平行四邊形,可得OA=OC,AB∥CD,則可證得△AOE≌△COF(ASA),繼而證得OE=OF;

(2)證明四邊形DEBF是矩形,由矩形的性質(zhì)和等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】(1)∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥CD,OB=OD,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)∵OE=OF,OB=OD,∴四邊形DEBF是平行四邊形,∵DE⊥AB,∴∠DEB=90°,∴四邊形DEBF是矩形,∴BD=EF,∴OD=OB=OE=OF=BD,∴腰長(zhǎng)等于BD的所有的等腰三角形為△DOF,△FOB,△EOB,△DOE.【點(diǎn)睛】本題考查了

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論