




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆廣東省揭陽普寧市中考聯考數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.桌面上有A、B兩球,若要將B球射向桌面任意一邊的黑點,則B球一次反彈后擊中A球的概率是()A. B. C. D.2.已知x=2﹣3,則代數式(7+43)x2+(2+3)x+3的值是()A.0 B.3 C.2+3 D.2﹣33.如圖,點P是∠AOB內任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數是().A. B. C. D.4.下列計算正確的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=5.如圖,已知BD與CE相交于點A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長等于()A.4 B.9 C.12 D.166.下列多邊形中,內角和是一個三角形內角和的4倍的是()A.四邊形B.五邊形C.六邊形D.八邊形7.對于非零的兩個實數、,規(guī)定,若,則的值為()A. B. C. D.8.在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或69.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長是()A. B. C. D.10.有15位同學參加歌詠比賽,所得的分數互不相同,取得分前8位同學進入決賽.某同學知道自己的分數后,要判斷自己能否進入決賽,他只需知道這15位同學的()A.平均數 B.中位數 C.眾數 D.方差二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,將△ABC以點B為中心順時針旋轉,使點C旋轉到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是_____cm1.(結果保留π).12.如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發(fā),沿BC以2cm/s的速度向點C移動,點Q從點C出發(fā),以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設運動時間為ts,當t=__________時,△CPQ與△CBA相似.13.二次函數y=(x﹣2m)2+1,當m<x<m+1時,y隨x的增大而減小,則m的取值范圍是_____.14.從“線段,等邊三角形,圓,矩形,正六邊形”這五個圖形中任取一個,取到既是軸對稱圖形又是中心對稱圖形的概率是_____.15.計算:=_______.16.方程的解為.三、解答題(共8題,共72分)17.(8分)如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.(1)求證:BC是⊙O的切線;(2)⊙O的半徑為5,tanA=,求FD的長.18.(8分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據以往的學習經驗,他想到了方程與函數的關系,一次函數y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解.根據以上方程與函數的關系,如果我們直到函數y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.佳佳為了解函數y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數的圖象.x…﹣3﹣﹣2﹣﹣1﹣012…y…﹣8﹣0m﹣﹣2﹣012…(1)直接寫出m的值,并畫出函數圖象;(2)根據表格和圖象可知,方程的解有個,分別為;(3)借助函數的圖象,直接寫出不等式x3+2x2>x+2的解集.19.(8分)海中有一個小島P,它的周圍18海里內有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.20.(8分)某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,這兩種臺燈的進價、售價如下表:類型價格進價(元/盞)售價(元/盞)A型3045B型5070(1)若商場預計進貨款為3500元,則這兩種臺燈各進多少盞.(2)若設商場購進A型臺燈m盞,銷售完這批臺燈所獲利潤為P,寫出P與m之間的函數關系式.(3)若商場規(guī)定B型燈的進貨數量不超過A型燈數量的4倍,那么A型和B型臺燈各進多少盞售完之后獲得利潤最多?此時利潤是多少元.21.(8分)如圖,已知點C是∠AOB的邊OB上的一點,求作⊙P,使它經過O、C兩點,且圓心在∠AOB的平分線上.22.(10分)如圖,在△ABC中,AB=AC,D為BC的中點,DE⊥AB,DF⊥AC,垂足分別為E、F,求證:DE=DF.23.(12分)某高中進行“選科走班”教學改革,語文、數學、英語三門為必修學科,另外還需從物理、化學、生物、政治、歷史、地理(分別記為A、B、C、D、E、F)六門選修學科中任選三門,現對該校某班選科情況進行調查,對調查結果進行了分析統(tǒng)計,并制作了兩幅不完整的統(tǒng)計圖.請根據以上信息,完成下列問題:該班共有學生人;請將條形統(tǒng)計圖補充完整;該班某同學物理成績特別優(yōu)異,已經從選修學科中選定物理,還需從余下選修學科中任意選擇兩門,請用列表或畫樹狀圖的方法,求出該同學恰好選中化學、歷史兩科的概率.24.某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數).①當x=90時,求出乙隊修路的天數;②求y與x之間的函數關系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題解析:由圖可知可以瞄準的點有2個..∴B球一次反彈后擊中A球的概率是.故選B.2、C【解析】
把x的值代入代數式,運用完全平方公式和平方差公式計算即可【詳解】解:當x=2﹣3時,(7+43)x2+(2+3)x+3=(7+43)(2﹣3)2+(2+3)(2﹣3)+3=(7+43)(7-43)+1+3=49-48+1+3=2+3故選:C.【點睛】此題考查二次根式的化簡求值,關鍵是代入后利用完全平方公式和平方差公式進行計算.3、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最?。删€段垂直平分線性質可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質;3.軸對稱作圖.4、D【解析】
各項中每項計算得到結果,即可作出判斷.【詳解】解:A.原式=8,錯誤;B.原式=2+4,錯誤;C.原式=1,錯誤;D.原式=x6y﹣3=,正確.故選D.【點睛】此題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.5、B【解析】
由于ED∥BC,可證得△ABC∽△ADE,根據相似三角形所得比例線段,即可求得AE的長.【詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.【點睛】本題考查的知識點是相似三角形的判定與性質,解題的關鍵是熟練的掌握相似三角形的判定與性質.6、C【解析】
利用多邊形的內角和公式列方程求解即可【詳解】設這個多邊形的邊數為n.由題意得:(n﹣2)×180°=4×180°.解得:n=1.答:這個多邊形的邊數為1.故選C.【點睛】本題主要考查的是多邊形的內角和公式,掌握多邊形的內角和公式是解題的關鍵.7、D【解析】試題分析:因為規(guī)定,所以,所以x=,經檢驗x=是分式方程的解,故選D.考點:1.新運算;2.分式方程.8、C【解析】
由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當t>2時,t-1=6,解得t=7;當t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點睛】本題考查了平面直角坐標系的內容,理解題意是解題關鍵.9、C【解析】
易證△DEF∽△DAB,△BEF∽△BCD,根據相似三角形的性質可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.【點睛】本題考查了相似三角形的判定及性質定理,熟練掌握性質定理是解題的關鍵.10、B【解析】
由中位數的概念,即最中間一個或兩個數據的平均數;可知15人成績的中位數是第8名的成績.根據題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數,比較即可.【詳解】解:由于15個人中,第8名的成績是中位數,故小方同學知道了自己的分數后,想知道自己能否進入決賽,還需知道這十五位同學的分數的中位數.故選B.【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數、中位數、眾數的意義.反映數據集中程度的統(tǒng)計量有平均數、中位數、眾數等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當的運用.二、填空題(本大題共6個小題,每小題3分,共18分)11、9π【解析】
根據直角三角形兩銳角互余求出∠BAC=30°,再根據直角三角形30°角所對的直角邊等于斜邊的一半可得BC=AB,然后求出陰影部分的面積=S扇形ABE﹣S扇形BCD,列計算即可得解.【詳解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=AB=×6=3(cm),∵△ABC以點B為中心順時針旋轉得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴陰影部分的面積=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=﹣=11π﹣3π=9π(cm1).故答案為9π.【點睛】本題考查了旋轉的性質,扇形的面積計算,直角三角形30°角所對的直角邊等于斜邊的一半的性質,求出陰影部分的面積等于兩個扇形的面積的差是解題的關鍵.12、4.8或【解析】
根據題意可分兩種情況,①當CP和CB是對應邊時,△CPQ∽△CBA與②CP和CA是對應邊時,△CPQ∽△CAB,根據相似三角形的性質分別求出時間t即可.【詳解】①CP和CB是對應邊時,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是對應邊時,△CPQ∽△CAB,所以=,即=,解得t=.綜上所述,當t=4.8或時,△CPQ與△CBA相似.【點睛】此題主要考查相似三角形的性質,解題的關鍵是分情況討論.13、m>1【解析】由條件可知二次函數對稱軸為x=2m,且開口向上,由二次函數的性質可知在對稱軸的左側時y隨x的增大而減小,可求得m+1<2m,即m>1.故答案為m>1.點睛:本題主要考查二次函數的性質,掌握當拋物線開口向下時,在對稱軸右側y隨x的增大而減小是解題的關鍵.14、.【解析】
試題分析:在線段、等邊三角形、圓、矩形、正六邊形這五個圖形中,既是中心對稱圖形又是軸對稱圖形的有線段、圓、矩形、正六邊形,共4個,所以取到的圖形既是中心對稱圖形又是軸對稱圖形的概率為.【點睛】本題考查概率公式,掌握圖形特點是解題關鍵,難度不大.15、3【解析】
先把化成,然后再合并同類二次根式即可得解.【詳解】原式=2.故答案為【點睛】本題考查了二次根式的計算:先把各二次根式化為最簡二次根式,再進行然后合并同類二次根式.16、.【解析】試題分析:首先去掉分母,觀察可得最簡公分母是,方程兩邊乘最簡公分母,可以把分式方程轉化為整式方程求解,然后解一元一次方程,最后檢驗即可求解:,經檢驗,是原方程的根.三、解答題(共8題,共72分)17、(1)證明見解析(2)【解析】
(1)由點G是AE的中點,根據垂徑定理可知OD⊥AE,由等腰三角形的性質可得∠CBF=∠DFG,∠D=∠OBD,從而∠OBD+∠CBF=90°,從而可證結論;(2)連接AD,解Rt△OAG可求出OG=3,AG=4,進而可求出DG的長,再證明△DAG∽△FDG,由相似三角形的性質求出FG的長,再由勾股定理即可求出FD的長.【詳解】(1)∵點G是AE的中點,∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半徑,∴BC是⊙O的切線;(2)連接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直徑,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG?FG,∴4=4FG,∴FG=1∴由勾股定理可知:FD=.【點睛】本題考查了垂徑定理,等腰三角形的性質,切線的判定,解直角三角形,相似三角形的判定與性質,勾股定理等知識,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的關鍵,證明證明△DAG∽△FDG是解(2)的關鍵.18、(1)2;(2)3,﹣2,或﹣1或1.(3)﹣2<x<﹣1或x>1.【解析】試題分析:(1)求出x=﹣1時的函數值即可解決問題;利用描點法畫出圖象即可;(2)利用圖象以及表格即可解決問題;(3)不等式x3+2x2>x+2的解集,即為函數y=x3+2x2﹣x﹣2的函數值大于2的自變量的取值范圍,觀察圖象即可解決問題.試題解析:(1)由題意m=﹣1+2+1﹣2=2.函數圖象如圖所示.(2)根據表格和圖象可知,方程的解有3個,分別為﹣2,或﹣1或1.(3)不等式x3+2x2>x+2的解集,即為函數y=x3+2x2﹣x﹣2的函數值大于2的自變量的取值范圍.觀察圖象可知,﹣2<x<﹣1或x>1.19、有觸礁危險,理由見解析.【解析】試題分析:過點P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根據三角函數AD,BD就可以用PD表示出來,根據AB=12海里,就得到一個關于PD的方程,求得PD.從而可以判斷如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險.試題解析:有觸礁危險.理由:過點P作PD⊥AC于D.設PD為x,在Rt△PBD中,∠PBD=90°-45°=45°.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°-60°=30°∴AD=∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴漁船不改變航線繼續(xù)向東航行,有觸礁危險.【點睛】本題主要考查解直角三角形在實際問題中的應用,構造直角三角形是解題的前提和關鍵.20、(1)應購進A型臺燈75盞,B型臺燈25盞;(2)P=﹣5m+2000;(3)商場購進A型臺燈20盞,B型臺燈80盞,銷售完這批臺燈時獲利最多,此時利潤為1900元.【解析】
(1)設商場應購進A型臺燈x盞,表示出B型臺燈為(100-x)盞,然后根據進貨款=A型臺燈的進貨款+B型臺燈的進貨款列出方程求解即可;(2)根據題意列出方程即可;
(3)設商場銷售完這批臺燈可獲利y元,根據獲利等于兩種臺燈的獲利總和列式整理,再求出x的取值范圍,然后根據一次函數的增減性求出獲利的最大值.【詳解】解:(1)設商場應購進A型臺燈x盞,則B型臺燈為(100﹣x)盞,根據題意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:應購進A型臺燈75盞,B型臺燈25盞;(2)設商場銷售完這批臺燈可獲利P元,則P=(45﹣30)m+(70﹣50)(100﹣m),=15m+2000﹣20m,=﹣5m+2000,即P=﹣5m+2000,(3)∵B型臺燈的進貨數量不超過A型臺燈數量的4倍,∴100﹣m≤4m,∴m≥20,∵k=﹣5<0,P隨m的增大而減小,∴m=20時,P取得最大值,為﹣5×20+2000=1900(元)答:商場購進A型臺燈20盞,B型臺燈80盞,銷售完這批臺燈時獲利最多,此時利潤為1900元.【點睛】本題考查了一次函數與一元一次方程的應用,解題的關鍵是熟練的掌握一次函數與一元一次方程的應用.21、答案見解析【解析】
首先作出∠AOB的角平分線,再作出OC的垂直平分線,兩線的交點就是圓心P,再以P為圓心,PC長為半徑畫圓即可.【詳解】解:如圖所示:.【點睛】本題考查基本作圖,掌握垂直平分線及角平分線的做法是本題的解題關鍵..22、答案見解析【解析】由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中點,可知BD=CD,利用AAS可證△BFD≌△CED,從而有DE=DF.23、(1)50人;(2)補圖見解析;(3).【解析】分析:(1)根據化學學科人數及其所占百分比可得總人數;(2)根據各學科人數之和等于總人數求得歷史的人
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 股份代持協(xié)議模板
- 全新夫妻離婚財產協(xié)議
- 火鍋店獎懲制度
- 合同能源管理在熱計量節(jié)能改造中的實踐案例
- 雁門太守行市公開課教案
- 中北大學本科培養(yǎng)方案
- 水電站綜自改造施工方案
- 保安開除員工合同樣本
- 個人變壓器合同樣本
- 個人房屋修繕合同樣本
- 靜療橫斷面調查護理
- DB45T 1056-2014 土地整治工程 第2部分:質量檢驗與評定規(guī)程
- 2025年3月《提振消費專項行動方案》解讀學習課件
- 4-6歲幼兒同伴交往能力量表
- 人教版 數學一年級下冊 第三單元 100以內數的認識綜合素養(yǎng)評價(含答案)
- T-CEPPC 18-2024 電力企業(yè)數字化轉型成熟度評價指南
- XX化工企業(yè)停工安全風險評估報告
- 2025年濟源職業(yè)技術學院單招職業(yè)技能測試題庫學生專用
- 全國川教版信息技術八年級下冊第二單元第3節(jié)《評價文創(chuàng)作品》教學設計
- 急診科護理創(chuàng)新管理
- 臨邊防護安全培訓課件
評論
0/150
提交評論