四川省樂山市犍為縣2024屆中考聯(lián)考數(shù)學(xué)試題含解析_第1頁
四川省樂山市犍為縣2024屆中考聯(lián)考數(shù)學(xué)試題含解析_第2頁
四川省樂山市犍為縣2024屆中考聯(lián)考數(shù)學(xué)試題含解析_第3頁
四川省樂山市犍為縣2024屆中考聯(lián)考數(shù)學(xué)試題含解析_第4頁
四川省樂山市犍為縣2024屆中考聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省樂山市犍為縣2024屆中考聯(lián)考數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖給定的是紙盒的外表面,下面能由它折疊而成的是()A. B. C. D.2.尺規(guī)作圖要求:Ⅰ、過直線外一點作這條直線的垂線;Ⅱ、作線段的垂直平分線;Ⅲ、過直線上一點作這條直線的垂線;Ⅳ、作角的平分線.如圖是按上述要求排亂順序的尺規(guī)作圖:則正確的配對是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ3.方程有兩個實數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<14.某個密碼鎖的密碼由三個數(shù)字組成,每個數(shù)字都是0-9這十個數(shù)字中的一個,只有當(dāng)三個數(shù)字與所設(shè)定的密碼及順序完全相同,才能將鎖打開,如果僅忘記了所設(shè)密碼的最后那個數(shù)字,那么一次就能打開該密碼的概率是()A.110 B.19 C.15.反比例函數(shù)是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限6.下列所給的汽車標(biāo)志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.7.如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是()A.﹣10 B.﹣5 C.5 D.108.下列二次根式中,的同類二次根式是()A. B. C. D.9.為了大力宣傳節(jié)約用電,某小區(qū)隨機抽查了10戶家庭的月用電量情況,統(tǒng)計如下表,關(guān)于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數(shù)12421A.極差是3 B.眾數(shù)是4 C.中位數(shù)40 D.平均數(shù)是20.510.不等式4-2x>0的解集在數(shù)軸上表示為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點A,B的坐標(biāo)分別為(﹣1,0),(﹣4,0),將△ABC沿x軸向左平移,當(dāng)點C落在直線y=﹣2x﹣6上時,則點C沿x軸向左平移了_____個單位長度.12.一個扇形的面積是πcm,半徑是3cm,則此扇形的弧長是_____.13.如圖,D、E分別是△ABC的邊AB、BC上的點,DE∥AC,若S△BDE:S△CDE=1:3,則BE:BC的值為_________.14.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=6cm,將△ABC以點B為中心順時針旋轉(zhuǎn),使點C旋轉(zhuǎn)到AB邊延長線上的點D處,則AC邊掃過的圖形(陰影部分)的面積是_____cm1.(結(jié)果保留π).15.規(guī)定用符號表示一個實數(shù)的整數(shù)部分,例如:,.按此規(guī)定,的值為________.16.點A(a,3)與點B(﹣4,b)關(guān)于原點對稱,則a+b=()A.﹣1 B.4 C.﹣4 D.117.如圖,正五邊形ABCDE放入某平面直角坐標(biāo)系后,若頂點A,B,C,D的坐標(biāo)分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標(biāo)是_____.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(A在B左),y軸交于點C(0,-3).(1)求拋物線的解析式;(2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;(3)若點E在x軸上,點P在拋物線上.是否存在以B、C、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.19.(5分)解不等式,并把解集在數(shù)軸上表示出來.20.(8分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當(dāng)四邊形ENFM為矩形時,求證:BE=BN.21.(10分)計算:﹣14﹣2×(﹣3)2+÷(﹣)如圖,小林將矩形紙片ABCD沿折痕EF翻折,使點C、D分別落在點M、N的位置,發(fā)現(xiàn)∠EFM=2∠BFM,求∠EFC的度數(shù).22.(10分)問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點A作AM⊥AB,點P是射線AM上一動點,連接CP,做CQ⊥CP交線段AB于點Q,連接PQ,求PQ的最小值;(3)李師傅準(zhǔn)備加工一個四邊形零件,如圖3,這個零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請你幫李師傅求出這個零件的對角線BD的最大值.圖323.(12分)如圖所示,在?ABCD中,E是CD延長線上的一點,BE與AD交于點F,DE=CD.(1)求證:△ABF∽△CEB;(2)若△DEF的面積為2,求?ABCD的面積.24.(14分)某化工材料經(jīng)銷公司購進(jìn)一種化工材料若干千克,價格為每千克40元,物價部門規(guī)定其銷售單價不高于每千克70元,不低于每千克40元.經(jīng)市場調(diào)查發(fā)現(xiàn),日銷量y(千克)是銷售單價x(元)的一次函數(shù),且當(dāng)x=70時,y=80;x=60時,y=1.在銷售過程中,每天還要支付其他費用350元.求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;當(dāng)銷售單價為多少元時,該公司日獲利最大?最大利潤是多少元?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

將A、B、C、D分別展開,能和原圖相對應(yīng)的即為正確答案:【詳解】A、展開得到,不能和原圖相對應(yīng),故本選項錯誤;B、展開得到,能和原圖相對,故本選項正確;C、展開得到,不能和原圖相對應(yīng),故本選項錯誤;D、展開得到,不能和原圖相對應(yīng),故本選項錯誤.故選B.2、D【解析】【分析】分別利用過直線外一點作這條直線的垂線作法以及線段垂直平分線的作法和過直線上一點作這條直線的垂線、角平分線的作法分別得出符合題意的答案.【詳解】Ⅰ、過直線外一點作這條直線的垂線,觀察可知圖②符合;Ⅱ、作線段的垂直平分線,觀察可知圖③符合;Ⅲ、過直線上一點作這條直線的垂線,觀察可知圖④符合;Ⅳ、作角的平分線,觀察可知圖①符合,所以正確的配對是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故選D.【點睛】本題主要考查了基本作圖,正確掌握基本作圖方法是解題關(guān)鍵.3、D【解析】當(dāng)k=1時,原方程不成立,故k≠1,當(dāng)k≠1時,方程為一元二次方程.∵此方程有兩個實數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.4、A【解析】試題分析:根據(jù)題意可知總共有10種等可能的結(jié)果,一次就能打開該密碼的結(jié)果只有1種,所以P(一次就能打該密碼)=,故答案選A.考點:概率.5、B【解析】

解:∵反比例函數(shù)是y=中,k=2>0,

∴此函數(shù)圖象的兩個分支分別位于一、三象限.

故選B.6、B【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關(guān)鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.7、A【解析】

作AE⊥BC于E,由四邊形ABCD為平行四邊形得AD∥x軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據(jù)反比例函數(shù)k的幾何意義得到S矩形ADOE=|?k|,利用反比例函數(shù)圖象得到.【詳解】作AE⊥BC于E,如圖,∵四邊形ABCD為平行四邊形,∴AD∥x軸,∴四邊形ADOE為矩形,∴S平行四邊形ABCD=S矩形ADOE,而S矩形ADOE=|?k|,∴|?k|=1,∵k<0,∴k=?1.故選A.【點睛】本題考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標(biāo)軸所圍成的矩形面積為|k|.8、C【解析】

先將每個選項的二次根式化簡后再判斷.【詳解】解:A:,與不是同類二次根式;B:被開方數(shù)是2x,故與不是同類二次根式;C:=,與是同類二次根式;D:=2,與不是同類二次根式.故選C.【點睛】本題考查了同類二次根式的概念.9、C【解析】

極差、中位數(shù)、眾數(shù)、平均數(shù)的定義和計算公式分別對每一項進(jìn)行分析,即可得出答案.【詳解】解:A、這組數(shù)據(jù)的極差是:60-25=35,故本選項錯誤;

B、40出現(xiàn)的次數(shù)最多,出現(xiàn)了4次,則眾數(shù)是40,故本選項錯誤;

C、把這些數(shù)從小到大排列,最中間兩個數(shù)的平均數(shù)是(40+40)÷2=40,則中位數(shù)是40,故本選項正確;

D、這組數(shù)據(jù)的平均數(shù)(25+30×2+40×4+50×2+60)÷10=40.5,故本選項錯誤;

故選:C.【點睛】本題考查了極差、平均數(shù)、中位數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點的概念.10、D【解析】

根據(jù)解一元一次不等式基本步驟:移項、系數(shù)化為1可得.【詳解】移項,得:-2x>-4,

系數(shù)化為1,得:x<2,

故選D.【點睛】考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負(fù)數(shù)不等號方向要改變.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

先根據(jù)勾股定理求得AC的長,從而得到C點坐標(biāo),然后根據(jù)平移的性質(zhì),將C點縱軸代入直線解析式求解即可得到答案.【詳解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴點C的坐標(biāo)為(﹣1,1).當(dāng)y=﹣2x﹣6=1時,x=﹣5,∵﹣1﹣(﹣5)=1,∴點C沿x軸向左平移1個單位長度才能落在直線y=﹣2x﹣6上.故答案為1.【點睛】本題主要考查平移的性質(zhì),解此題的關(guān)鍵在于先利用勾股定理求得相關(guān)點的坐標(biāo),然后根據(jù)平移的性質(zhì)將其縱坐標(biāo)代入直線函數(shù)式求解即可.12、【解析】

根據(jù)扇形面積公式求解即可【詳解】根據(jù)扇形面積公式.可得:,,故答案:.【點睛】本題主要考查了扇形的面積和弧長之間的關(guān)系,利用扇形弧長和半徑代入公式即可求解,正確理解公式是解題的關(guān)鍵.注意在求扇形面積時,要根據(jù)條件選擇扇形面積公式.13、1:4【解析】

由S△BDE:S△CDE=1:3,得到

,于是得到

.【詳解】解:兩個三角形同高,底邊之比等于面積比.故答案為【點睛】本題考查了三角形的面積,比例的性質(zhì)等知識,知道等高不同底的三角形的面積的比等于底的比是解題的關(guān)鍵.14、9π【解析】

根據(jù)直角三角形兩銳角互余求出∠BAC=30°,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得BC=AB,然后求出陰影部分的面積=S扇形ABE﹣S扇形BCD,列計算即可得解.【詳解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=AB=×6=3(cm),∵△ABC以點B為中心順時針旋轉(zhuǎn)得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴陰影部分的面積=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=﹣=11π﹣3π=9π(cm1).故答案為9π.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),扇形的面積計算,直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),求出陰影部分的面積等于兩個扇形的面積的差是解題的關(guān)鍵.15、4【解析】

根據(jù)規(guī)定,取的整數(shù)部分即可.【詳解】∵,∴∴整數(shù)部分為4.【點睛】本題考查無理數(shù)的估值,熟記方法是關(guān)鍵.16、1【解析】

據(jù)兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反可得a、b的值,然后再計算a+b即可.【詳解】∵點A(a,3)與點B(﹣4,b)關(guān)于原點對稱,∴a=4,b=﹣3,∴a+b=1,故選D.【點睛】考查關(guān)于原點對稱的點的坐標(biāo)特征,橫坐標(biāo)、縱坐標(biāo)都互為相反數(shù).17、(3,2).【解析】

根據(jù)題意得出y軸位置,進(jìn)而利用正多邊形的性質(zhì)得出E點坐標(biāo).【詳解】解:如圖所示:∵A(0,a),∴點A在y軸上,∵C,D的坐標(biāo)分別是(b,m),(c,m),∴B,E點關(guān)于y軸對稱,∵B的坐標(biāo)是:(﹣3,2),∴點E的坐標(biāo)是:(3,2).故答案為:(3,2).【點睛】此題主要考查了正多邊形和圓,正確得出y軸的位置是解題關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解析】

(1)將的坐標(biāo)代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式;

(2)根據(jù)的坐標(biāo),易求得直線的解析式.由于都是定值,則的面積不變,若四邊形面積最大,則的面積最大;過點作軸交于,則可得到當(dāng)面積有最大值時,四邊形的面積最大值;(3)本題應(yīng)分情況討論:①過作軸的平行線,與拋物線的交點符合點的要求,此時的縱坐標(biāo)相同,代入拋物線的解析式中即可求出點坐標(biāo);②將平移,令點落在軸(即點)、點落在拋物線(即點)上;可根據(jù)平行四邊形的性質(zhì),得出點縱坐標(biāo)(縱坐標(biāo)的絕對值相等),代入拋物線的解析式中即可求得點坐標(biāo).【詳解】解:(1)把代入,可以求得∴(2)過點作軸分別交線段和軸于點,在中,令,得設(shè)直線的解析式為可求得直線的解析式為:∵S四邊形ABCD設(shè)當(dāng)時,有最大值此時四邊形ABCD面積有最大值(3)如圖所示,如圖:①過點C作CP1∥x軸交拋物線于點P1,過點P1作P1E1∥BC交x軸于點E1,此時四邊形BP1CE1為平行四邊形,

∵C(0,-3)

∴設(shè)P1(x,-3)

∴x2-x-3=-3,解得x1=0,x2=3,

∴P1(3,-3);

②平移直線BC交x軸于點E,交x軸上方的拋物線于點P,當(dāng)BC=PE時,四邊形BCEP為平行四邊形,

∵C(0,-3)

∴設(shè)P(x,3),

∴x2-x-3=3,

x2-3x-8=0

解得x=或x=,

此時存在點P2(,3)和P3(,3),

綜上所述存在3個點符合題意,坐標(biāo)分別是P1(3,-3),P2(,3),P3(,3).【點睛】此題考查了二次函數(shù)解析式的確定、圖形面積的求法、平行四邊形的判定和性質(zhì)、二次函數(shù)的應(yīng)用等知識,綜合性強,難度較大.19、見解析【解析】

根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得解集.在數(shù)軸上表示出來即可.【詳解】解:去分母,得3x+1-6>4x-2,移項,得:3x-4x>-2+5,合并同類項,得-x>3,系數(shù)化為1,得x<-3,不等式的解集在數(shù)軸上表示如下:【點睛】此題考查解一元一次不等式,在數(shù)軸上表示不等式的解集,解題關(guān)鍵在于掌握運算順序.20、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由已知條件易得∠EAG=∠FCG,AG=GC結(jié)合∠AGE=∠FGC可得△EAG≌△FCG,從而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四邊形ENFM是平行四邊形;(2)如下圖,由四邊形ENFM為矩形可得EG=NG,結(jié)合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,則∠BAC=∠ACB,AE=CN,從而可得AB=CB,由此可得BE=BN.詳解:(1)∵四邊形ABCD為平行四四邊形邊形,∴AB//CD.∴∠EAG=∠FCG.∵點G為對角線AC的中點,∴AG=GC.∵∠AGE=∠FGC,∴△EAG≌△FCG.∴EG=FG.同理MG=NG.∴四邊形ENFM為平行四邊形.(2)∵四邊形ENFM為矩形,∴EF=MN,且EG=,GN=,∴EG=NG,又∵AG=CG,∠AGE=∠CGN,∴△EAG≌△NCG,∴∠BAC=∠ACB,AE=CN,∴AB=BC,∴AB-AE=CB-CN,∴BE=BN.點睛:本題是一道考查平行四邊形的判定和性質(zhì)及矩形性質(zhì)的題目,熟練掌握相關(guān)圖形的性質(zhì)和判定是順利解題的關(guān)鍵.21、(1)﹣10;(2)∠EFC=72°.【解析】

(1)原式利用乘方的意義,立方根定義,乘除法則及家減法法則計算即可;(2)根據(jù)折疊的性質(zhì)得到一對角相等,再由已知角的關(guān)系求出結(jié)果即可.【詳解】(1)原式=﹣1﹣18+9=﹣10;(2)由折疊得:∠EFM=∠EFC,∵∠EFM=2∠BFM,∴設(shè)∠EFM=∠EFC=x,則有∠BFM=x,∵∠MFB+∠MFE+∠EFC=180°,∴x+x+x=180°,解得:x=72°,則∠EFC=72°.【點睛】本題考查了實數(shù)的性質(zhì)及平行線的性質(zhì),解題的關(guān)鍵是熟練掌握實數(shù)的運算法則及平行線的性質(zhì).22、(1);(2);(3)+.【解析】

(1)由等腰直角三角形的性質(zhì)可得BC=3,CE=,∠ACB=∠DCE=45°,可證△ACD∽△BCE,可得=;(2)由題意可證點A,點Q,點C,點P四點共圓,可得∠QAC=∠QPC,可證△ABC∽△PQC,可得,可得當(dāng)QC⊥AB時,PQ的值最小,即可求PQ的最小值;(3)作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,由題意可證△ABC∽△DEC,可得,且∠BCE=∠ACD,可證△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的長,由三角形三邊關(guān)系可求BD的最大值.【詳解】(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,∴BC=3,CE=,∠ACB=∠DCE=45°,∴∠BCE=∠ACD,∵==,=,∴=,∠BCE=∠ACD,∴△ACD∽△BCE,∴=;(2)∵∠ACB=90°,∠B=30°,BC=4,∴AC=,AB=2AC=,∵∠QAP=∠QCP=90°,∴點A,點Q,點C,點P四點共圓,∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,∴△ABC∽△PQC,∴,∴PQ=×QC=QC,∴當(dāng)QC的長度最小時,PQ的長度最小,即當(dāng)QC⊥AB時,PQ的值最小,此時QC=2,PQ的最小值為;(3)如圖,作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,,∵∠ADC=90°,AD=CD,∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,∴△ABC∽△DEC,∴,∵∠DCE=∠ACB,∴∠BCE=∠ACD,∴△BCE∽△ACD,∴∠BEC=∠ADC=90°,∴CE=BC=2,∵點F是EC中點,∴DF=EF=CE=,∴BF==,∴BD≤DF+BF=+【點睛】本題是相似綜合題,考查了等腰直角三角形的性質(zhì),勾股定理,相似三角形的判定和性質(zhì)等知識,添加恰當(dāng)輔助線構(gòu)造相似三角形是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論