版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
專題09三點共線問題一、【知識回顧】【三點共線模型】①函數(shù)模型:構建平面直角坐標系,求出三個點坐標,其中兩個點構建一次函數(shù)模型,判斷第三個點是否在函數(shù)圖像上,滿足則共線②平角模型如圖,要證明A、B、C三點共線,可以選擇一條過B點的直線PBQ,并連接AB、CB,證明∠ABP與∠CBP互為鄰補角,即∠ABP+∠CBP=180°③平行線模型如圖,要證明A、B、C三點共線,先證明AB∥DE,在證明BC∥DE④垂線模型如圖,要證明A、B、C三點共線,先證明AC⊥MN,在證明A⊥MN【三線共點模型】①證明兩條線的交點,在第三條直線上②證明三條線中兩條線的交點和另外兩條線的交點是同一個二、【考點類型】考點1:三點共線典例1:(2022秋·福建泉州·九年級校考階段練習)如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0繞點B按順時針方向旋轉得到SKIPIF1<0,當點E恰好落在線段SKIPIF1<0上時,連接SKIPIF1<0,SKIPIF1<0的平分線SKIPIF1<0交SKIPIF1<0于點F,連接SKIPIF1<0.(1)求SKIPIF1<0的長;(2)求證:C、E、F三點共線.【答案】(1)SKIPIF1<0;(2)見解析【分析】(1)將SKIPIF1<0繞點SKIPIF1<0按順時針方向旋轉得到SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,從而可求SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,可得SKIPIF1<0是SKIPIF1<0中點,SKIPIF1<0即可得答案;(2)連接SKIPIF1<0,先證SKIPIF1<0,再用SKIPIF1<0得SKIPIF1<0,從而證明SKIPIF1<0即可.【詳解】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0將SKIPIF1<0繞點SKIPIF1<0按順時針方向旋轉得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中,SKIPIF1<0;(2)連接SKIPIF1<0,如圖:由(1)知:SKIPIF1<0平分SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點共線.【點睛】本題考查直角三角形性質及應用,涉及勾股定理、旋轉變換、等腰三角形性質等知識,解題的關鍵是掌握定理:直角三角形斜邊上的中線等于斜邊的一半.【變式1】(2022春·福建泉州·九年級校考階段練習)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0繞點SKIPIF1<0順時針旋轉一定的角度SKIPIF1<0得到SKIPIF1<0,點SKIPIF1<0,SKIPIF1<0的對應點分別是SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0.(1)如圖SKIPIF1<0,當點SKIPIF1<0恰好在SKIPIF1<0上時,求SKIPIF1<0的大?。?2)如圖SKIPIF1<0,若SKIPIF1<0,點SKIPIF1<0是SKIPIF1<0的中點,判斷四邊形SKIPIF1<0的形狀,并證明你的結論.(3)如圖SKIPIF1<0,若點SKIPIF1<0為SKIPIF1<0中點,SKIPIF1<0求證:SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點共線.SKIPIF1<0求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0(2)四邊形SKIPIF1<0是平行四邊形,詳見解析(3)①詳見解析;②4【分析】(1)由旋轉的性質可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由等腰三角形的性質可求SKIPIF1<0,即可求解;(2)由旋轉的性質可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由“SKIPIF1<0”可證SKIPIF1<0,可得SKIPIF1<0,即可求解;(3)SKIPIF1<0通過證明點SKIPIF1<0、點SKIPIF1<0、點SKIPIF1<0、點SKIPIF1<0四點共圓,點SKIPIF1<0,點SKIPIF1<0,點SKIPIF1<0,點SKIPIF1<0四點共圓,可得SKIPIF1<0,SKIPIF1<0,可得結論;SKIPIF1<0由直角三角形的性質可求SKIPIF1<0,由圓中直徑最大可求解.【詳解】(1)解:SKIPIF1<0將SKIPIF1<0繞點SKIPIF1<0順時針旋轉一定的角度SKIPIF1<0得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(2)解:四邊形SKIPIF1<0是平行四邊形,理由如下:SKIPIF1<0點SKIPIF1<0是邊SKIPIF1<0中點,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等邊三角形,SKIPIF1<0,SKIPIF1<0繞點SKIPIF1<0順時針旋轉SKIPIF1<0得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等邊三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形;(3)SKIPIF1<0證明:如圖SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0將SKIPIF1<0繞點SKIPIF1<0順時針旋轉一定的角度SKIPIF1<0得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0點SKIPIF1<0、點SKIPIF1<0、點SKIPIF1<0、點SKIPIF1<0四點共圓,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點SKIPIF1<0,點SKIPIF1<0,點SKIPIF1<0,點SKIPIF1<0四點共圓,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點SKIPIF1<0,點SKIPIF1<0,點SKIPIF1<0三點共線;SKIPIF1<0解:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點SKIPIF1<0、點SKIPIF1<0、點SKIPIF1<0、點SKIPIF1<0四點共圓,SKIPIF1<0,SKIPIF1<0是直徑,SKIPIF1<0最大值為SKIPIF1<0.【點睛】本題是四邊形綜合題,考查了全等三角形的判定和性質,旋轉的性質,圓的有關知識,平行四邊形的判定,直角三角形的性質等知識,靈活運用這些性質解決問題是解題的關鍵.【變式2】(2021春·福建廈門·九年級??茧A段練習)拋物線C1:y=﹣x2+2mx﹣m2+m+3的頂點為A,拋物線C2:y=﹣(x+m+4)2﹣m﹣1的頂點為B,其中m≠﹣2,拋物線C1與C2相交于點P.(1)當m=1時,求拋物線C1的頂點坐標;(2)已知點C(﹣2,1),求證:點A,B,C三點共線;(3)設點P的縱坐標為q,求q的取值范圍.【答案】(1)拋物線C1的頂點坐標為(1,4)(2)見解析(3)SKIPIF1<0【分析】(1)將m=1代入拋物線C1:y=﹣x2+2mx﹣m2+m+3,先按照x=﹣SKIPIF1<0求得拋物線C1的頂點橫坐標,再將橫坐標代入解析式求得縱坐標即可;(2)先得出A(m,m+3),B(﹣m﹣4,﹣m﹣1),再用待定系數(shù)法求得直線AB的解析式,然后將點C的橫坐標代入直線AB的解析式,計算得出y值等于點C的縱坐標即可證得結論;(3)聯(lián)立SKIPIF1<0,求得方程組的解,從而可用含m的式子表示出點P的坐標,將點P的縱坐標配方,由二次函數(shù)的性質可得答案.(1)解:當m=1時,拋物線C1:y=﹣x2+2mx﹣m2+m+3可化為:y=﹣x2+2x+3,∴其頂點橫坐標為:x=﹣SKIPIF1<0=1,將x=1代入y=﹣x2+2x+3,得y=﹣1+2+3=4,∴當m=1時,拋物線C1的頂點坐標為(1,4);(2)證明:∵拋物線C1:y=﹣x2+2mx﹣m2+m+3=﹣(x﹣m)2+m+3,∴A(m,m+3);∵拋物線C2:y=﹣(x+m+4)2﹣m﹣1的頂點為B,∴B(﹣m﹣4,﹣m﹣1),設直線AB的解析式為y=kx+b(k≠0),將A(m,m+3),B(﹣m﹣4,﹣m﹣1)代入,得SKIPIF1<0,解得SKIPIF1<0,∴直線AB的解析式為y=x+3,當x=﹣2時,y=x+3=﹣2+3=1,∴點C(﹣2,1)在直線AB上,∴點A,B,C三點共線;(3)解:聯(lián)立SKIPIF1<0,把①代入②,得:﹣x2+2mx﹣m2+m+3=﹣(x+m+4)2﹣m﹣1,解得x=﹣SKIPIF1<0,把x=﹣SKIPIF1<0代入①,得:y=﹣SKIPIF1<0+2m×(﹣SKIPIF1<0)﹣m2+m+3=﹣m2﹣4m﹣SKIPIF1<0,∴方程組的解為:SKIPIF1<0,∴點P的坐標為(﹣SKIPIF1<0,﹣m2﹣4m﹣SKIPIF1<0),∴點P的縱坐標q=﹣m2﹣4m﹣SKIPIF1<0=﹣(m+2)2+SKIPIF1<0,∵m≠﹣2,-1<0,∴q的取值范圍是q<SKIPIF1<0.【點睛】本題屬于二次函數(shù)綜合題,考查了拋物線的頂點坐標的求法、待定系數(shù)法求函數(shù)的解析式、三點共線的證明及二次函數(shù)的性質等知識點,熟練掌握待定系數(shù)法及二次函數(shù)的性質是解題的關鍵.【變式3】(2022秋·福建福州·九年級統(tǒng)考期末)如圖,已知矩形ABCD中,SKIPIF1<0于點E,SKIPIF1<0.(1)若SKIPIF1<0,求CE的長;(2)設點C關于AD的對稱點為F,求證:B,E,F(xiàn)三點共線.【答案】(1)SKIPIF1<0(2)見解析【分析】(1)根據矩形的性質以及等角的余角相等可得SKIPIF1<0,進而可得SKIPIF1<0,列出比例式代入數(shù)值,即可求得SKIPIF1<0;(2)根據題意點C關于AD的對稱點為F,由(1)可得SKIPIF1<0,根據對稱可得C,D,F(xiàn)三點共線,進而根據矩形的性質可得SKIPIF1<0,SKIPIF1<0,證明SKIPIF1<0,得到SKIPIF1<0,即可證明SKIPIF1<0,即B,E,F(xiàn)三點共線.(1)∵四邊形ABCD是矩形,SKIPIF1<0.SKIPIF1<0SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.(2)由(1)得SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0.∵點C與點F關于AD對稱,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,∴C,D,F(xiàn)三點共線.SKIPIF1<0.∵四邊形ABCD是矩形,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0.SKIPIF1<0,SKIPIF1<0∴B,E,F(xiàn)三點共線.【點睛】本題考查了相似三角形的性質與判定,矩形的性質,掌握相似三角形的性質與判定是解題的關鍵.考點2:三線共點典例2:(2021·福建·統(tǒng)考中考真題)如圖,已知線段SKIPIF1<0,垂足為a.(1)求作四邊形SKIPIF1<0,使得點B,D分別在射線SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)設P,Q分別為(1)中四邊形SKIPIF1<0的邊SKIPIF1<0的中點,求證:直線SKIPIF1<0相交于同一點.【答案】(1)作圖見解析;(2)證明見解析【分析】(1)根據SKIPIF1<0,點B在射線SKIPIF1<0上,過點A作SKIPIF1<0;根據等邊三角形性質,得SKIPIF1<0,分別過點A、B,SKIPIF1<0為半徑畫圓弧,交點即為點C;再根據等邊三角形的性質作CD,即可得到答案;(2)設直線SKIPIF1<0與SKIPIF1<0相交于點S、直線SKIPIF1<0與SKIPIF1<0相交于點SKIPIF1<0,根據平行線和相似三角形的性質,得SKIPIF1<0,從而得SKIPIF1<0,即可完成證明.【詳解】(1)作圖如下:四邊形SKIPIF1<0是所求作的四邊形;(2)設直線SKIPIF1<0與SKIPIF1<0相交于點S,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0設直線SKIPIF1<0與SKIPIF1<0相交于點SKIPIF1<0,同理SKIPIF1<0.∵P,Q分別為SKIPIF1<0的中點,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴點S與SKIPIF1<0重合,即三條直線SKIPIF1<0相交于同一點.【點睛】本題考查了尺規(guī)作圖、等邊三角形、直角三角形、平行線、相似三角形等基礎知識,解題的關鍵是熟練掌握推理能力、空間觀念、化歸與轉化思想,從而完成求解.【變式1】(2020·福建·統(tǒng)考中考真題)如圖,SKIPIF1<0為線段SKIPIF1<0外一點.(1)求作四邊形SKIPIF1<0,使得SKIPIF1<0,且SKIPIF1<0;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)在(1)的四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0相交于點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點分別為SKIPIF1<0,求證:SKIPIF1<0三點在同一條直線上.【答案】(1)詳見解析;(2)詳見解析【分析】(1)按要求進行尺規(guī)作圖即可;(2)通過證明角度之間的大小關系,得到SKIPIF1<0,即可說明SKIPIF1<0三點在同一條直線上.【詳解】解:(1)則四邊形SKIPIF1<0就是所求作的四邊形.(2)∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.連接SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵點SKIPIF1<0在SKIPIF1<0上∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0三點在同一條直線上.【點睛】本題考查尺規(guī)作圖、平行線的判定與性質、相似三角形的性質與判定等基礎知識,考查推理能力、空間觀念與幾何直觀,考查化歸與轉化思想.鞏固訓練、單選題1.(2023春·八年級課時練習)如圖,正方形ABCD中,AB=4,延長DC到點F(0<CF<4),在線段CB上截取點P,使得CP=CF,連接BF、DP,再將△DCP沿直線DP折疊得到△DEP.下列結論:①若延長DP,則DP⊥FB;②若連接CE,則SKIPIF1<0;③連接PF,當E、P、F三點共線時,CF=4SKIPIF1<0﹣4;④連接AE、AF、EF,若△AEF是等腰三角形,則CF=4SKIPIF1<0﹣4;其中正確有()A.4個 B.3個 C.2個 D.1個【答案】C【分析】證明△DCP≌△BCF,利用全等三角形的性質與三角形的內角和定理可判斷①,證明DP⊥EC,結合BF⊥DP,可判斷②,當E,P,F(xiàn)共線時,求解∠DPC=∠DPE=SKIPIF1<0.在CD上取一點J,使得CJ=CP,則∠CJP=∠CPJ=SKIPIF1<0,DJ=JP,設CJ=CP=x,則DJ=JP=SKIPIF1<0x,可得SKIPIF1<0x+x=4,解方程可判斷③,連接CE,BD.由③可知,當CF=4SKIPIF1<0﹣4時,∠CDP=∠EDP=SKIPIF1<0,證明點E在DB上,EA=EC,可得∠ECF>∠EFC,EF>EC,可判斷④,從而可得答案.【詳解】解:①如圖1中,延長DP交BF于點H.∵四邊形ABCD是正方形,∴CD=CB,∠DCP=∠BCF=90°,在△DCP和△BCF中,SKIPIF1<0,∴△DCP≌△BCF(SAS),∴∠CDP=∠CBF,∵∠CPD=∠BPH,∴∠DCP=∠BHP=90°,∴DP⊥BF,故①正確.②∵C,E關于DP對稱,∴DP⊥EC,∵BF⊥DP,∴SKIPIF1<0,故②正確.③如圖2中,當E,P,F(xiàn)共線時,∠DPC=∠DPE=SKIPIF1<0.在CD上取一點J,使得CJ=CP,則∠CJP=∠CPJ=SKIPIF1<0,∴SKIPIF1<0∴∠JDP=∠JPD=SKIPIF1<0,∴DJ=JP,設CJ=CP=x,則DJ=JP=SKIPIF1<0x,∴SKIPIF1<0x+x=4,∴x=4SKIPIF1<0﹣4,∴CF=4SKIPIF1<0﹣4,故③錯誤,④如圖3中,連接CE,BD.由③可知,當CF=4SKIPIF1<0﹣4時,∠CDP=∠EDP=SKIPIF1<0,∴∠CDE=SKIPIF1<0,∴點E在DB上,∵A,C關于BD對稱,∴EA=EC,∵∠ECF>∠EFC,∴EF>EC,∴EF>EA,∴此時△AEF不是等腰三角形,故④錯誤.故選:C.【點睛】本題考查的是全等三角形的判定與性質,等腰三角形的判定,三角形內角和定理的應用,二次根式的除法運算,軸對稱的性質,熟練的應用以上知識解題是關鍵.2.(2023·全國·八年級專題練習)如圖,在長方形ABCD中,ADSKIPIF1<0BC,ABSKIPIF1<0CD,E在AD上.AD=m,AE=n(m>n>0).將長方形沿著BE折疊,A落在A′處,A'E交BC于點G,再將∠A′ED對折,點D落在直線A′E上的D′處,C落在C′處,折痕EF,F(xiàn)在BC上,若D、F、D′三點共線,則BF=()A.m+SKIPIF1<0n B.SKIPIF1<0 C.SKIPIF1<0 D.m﹣n【答案】D【分析】連接DD′,證明∠EFD是直角,然后證明△BEF和△EFE全等即可得出結論.【詳解】解:如圖,連接DD′,∵D、F、D′三點共線,四邊形EFC′D′是由四邊形EFCD翻折得到,∴△EFD≌△EFD′,∠DEF=∠D′EF,∴∠EFD=90°,∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∵∠AEB=∠NEB,∴∠BEF=90°,在△BEF和△DFE中,SKIPIF1<0,∴△BEF≌△DFE(ASA),∴EF=ED,∵AD=m,AE=n,∴EF=ED=m﹣n.故選:D.【點睛】本題結合矩形考查了折疊變換,熟知折疊的性質并靈活運用是解題的關鍵,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.3.(2022秋·貴州黔西·九年級統(tǒng)考期末)如圖,⊙O的半徑為2SKIPIF1<0,PA,PB,CD分別切⊙O于點A,B,E,CD分別交PA,PB于點C,D,且P,E,O三點共線.若∠P=60°,則CD的長為()A.4 B.2SKIPIF1<0 C.3SKIPIF1<0 D.6【答案】A【分析】SKIPIF1<0,先證明SKIPIF1<0,得出SKIPIF1<0,SKIPIF1<0,得出SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0,在SKIPIF1<0中,設SKIPIF1<0,則SKIPIF1<0,利用勾股定理求出SKIPIF1<0,即可求解.【詳解】解:連接SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0,SKIPIF1<0PA,PB,分別切⊙O于點A,B,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等邊三角形,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0,如下圖根據等腰三角形的性質,點SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0,在SKIPIF1<0中,設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:A.【點睛】本題考查了圓的切線,三角形全等、等腰三角形、勾股定理,解題的關鍵是添加適當?shù)妮o助線,掌握切線的性質來求解.4.(2022秋·新疆烏魯木齊·九年級??计谥校┤鐖D,Rt△ABC中,∠ACB=90°,∠B=60°,AB=6,將Rt△ABC繞點C順時針旋轉到Rt△A’B’C.當A’、B’、A三點共線時,AA’=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據直角三角形的性質,可得BC的長,根據旋轉的性質,可得A′B′的長,B′C的長,∠A′、∠A′B′C,根據鄰補角的定義,可得∠AB′C的度數(shù),根據等腰三角形的判定,可得AB′,根據線段的和差,可得答案.【詳解】解:由在Rt△ABC中,∠ACB=90°,∠B=60°,AB=6,得∠BAC=30°,BC=3.由旋轉的性質,得A′B′=AB=6,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,AC=A′C.由等腰三角形的性質,得∠CAB′=∠A′=30°.由鄰補角的定義,得∠AB′C=180°-∠A′B′C=120°.由三角形的內角和定理,得∠ACB′=180°-∠AB′C-∠B′AC=30°.∴∠B′AC=∠B′CA=30°,AB′=B′C=BC=3.A′A=A′B′+AB′=6+3=9,故選:D.【點睛】本題考查了旋轉的性質,利用了旋轉的性質,直角三角形的性質,等腰三角形的性質,利用等腰三角形的判定得出AB′=B′C是解題關鍵.5.(2022秋·山東日照·八年級統(tǒng)考期中)如圖,已知SKIPIF1<0和SKIPIF1<0都是等邊三角形,且SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點共線.SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,連結SKIPIF1<0.以下五個結論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0是等邊三角形;⑤SKIPIF1<0.其中正確結論的有(
)個A.5 B.4 C.3 D.2【答案】A【分析】根據等邊三角形的性質、全等三角形的判定與性質對各結論逐項分析即可判定.【詳解】解:①∵△ABC和△CDE為等邊三角形?!郃C=BC,CD=CE,∠BCA=∠DCE=60°∴∠ACD=∠BCE在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,CD=CE∴△ACD≌△BCE(SAS)∴AD=BE,∠ADC=∠BEC,則①正確;②∵∠ACB=∠DCE=60°∴∠BCD=60°∴△DCE是等邊三角形∴∠EDC=60°=∠BCD∴BC//DE∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,②正確;③∵∠DCP=60°=∠ECQ在△CDP和△CEQ中,∠ADC=∠BEC,CD=CE,∠DCP=∠ECQ∴△CDP≌△CEQ(ASA)∴CР=CQ∴∠CPQ=∠CQP=60°,∴△PC2是等邊三角形,③正確;④∠CPQ=∠CQP=60°∴∠QPC=∠BCA∴PQ//AE,④正確;⑤同④得△ACP≌△BCQ(ASA)∴AP=BQ,⑤正確.故答案為A.【點睛】本題主要考查了等邊三角形的性質、全等三角形的判定與性質等知識點,熟練掌握全等三角形的判定與性質是解答本題的關鍵.二、填空題6.(2023秋·浙江寧波·九年級統(tǒng)考期末)如圖,在正方形SKIPIF1<0中,點E在SKIPIF1<0上,SKIPIF1<0,連接SKIPIF1<0,取SKIPIF1<0中點F,過F作SKIPIF1<0且使得SKIPIF1<0,連接SKIPIF1<0并延長,將SKIPIF1<0繞點C旋轉到SKIPIF1<0,當SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點共線且SKIPIF1<0時,SKIPIF1<0______.【答案】SKIPIF1<0【分析】解:如圖,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,證明SKIPIF1<0,SKIPIF1<0,設SKIPIF1<0,求解SKIPIF1<0,求解SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,證明SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,求解SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,可得SKIPIF1<0,再解直角三角形可得答案.【詳解】解:如圖,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,∵SKIPIF1<0中點為F,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,設SKIPIF1<0,∵正方形SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,由輔助線可得:四邊形SKIPIF1<0為矩形,∴SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,由SKIPIF1<0,同理可得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,由旋轉可得:SKIPIF1<0,∴設SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題考查的是正方形的性質,勾股定理的應用,旋轉的性質,矩形的判定與性質,線段的垂直平分線的性質,等腰三角形的性質與判定,銳角三角函數(shù)的應用,本題難度很大,計算量大,對學生要求高,細心的計算是解本題的關鍵.7.(2023·全國·九年級專題練習)如圖SKIPIF1<0中,SKIPIF1<0與SKIPIF1<0的平分線相交于H,過點H作SKIPIF1<0交SKIPIF1<0于E,交SKIPIF1<0于F,SKIPIF1<0于D,以下四個結論①SKIPIF1<0;②SKIPIF1<0;③點H到SKIPIF1<0各邊的距離相等;④若B,H,D三點共線時,SKIPIF1<0一定為等腰三角形.其中正確結論的序號為_____.【答案】②③④【分析】①利用三角形的內角和定理和角平分線平分角,進行求解;②證明SKIPIF1<0為等腰三角形,即可得證;③利用角平分線的性質,即可得證;④證明SKIPIF1<0,即可得證.【詳解】解,①∵SKIPIF1<0與SKIPIF1<0的平分線相交于H,∴SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,故①錯誤;②∵SKIPIF1<0與SKIPIF1<0的平分線相交于H,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故②正確;③過SKIPIF1<0作SKIPIF1<0,∵SKIPIF1<0與SKIPIF1<0的平分線相交于H,SKIPIF1<0,∴SKIPIF1<0,∴點H到△ABC各邊的距離相等,故③正確;④若B,H,D三點共線時,則SKIPIF1<0,且SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0(SKIPIF1<0),∴SKIPIF1<0,∴SKIPIF1<0一定為等腰三角形,故④正確.故答案為:②③④;【點睛】本題考查角平分線的性質,等腰三角形的判斷和性質,全等三角形的判定和性質.熟練掌握角平分線平分角,角平分線上的點到角兩邊的距離相等,是解題的關鍵.8.(2022春·福建龍巖·八年級校聯(lián)考期中)已知矩形ABCD中,AB=8,BC=10,將△ABE沿BE對折,點A的對應點為SKIPIF1<0,連接SKIPIF1<0C,當E、SKIPIF1<0、C恰好三點共線時,AE的值為____________【答案】4【分析】根據翻折的性質可得BA=BA′=CD=8,∠AEB=∠A′EB,然后根據四邊形ABCD是矩形,利用勾股定理即可解決問題.【詳解】解:根據翻折的性質可知:BA=BA′=CD=8,∠AEB=∠A′EB,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AEB=∠CBE,∴∠CEB=∠CBE,∴CE=CB=10,在Rt△DEC中,根據勾股定理得:SKIPIF1<0,∴AE=AD-DE=10-6=4,故答案為:4.【點睛】本題考查折疊的性質和矩形的性質,勾股定理,熟練掌握折疊的性質是解決問題的關鍵.9.(2022春·福建泉州·八年級統(tǒng)考期末)如圖,在SKIPIF1<0中,E點是BD的中點,MN經過E點分別與AD、BC相交于點M、N.下列四個結論:①SKIPIF1<0;②SKIPIF1<0;③A、C、E三點共線;④若SKIPIF1<0,則SKIPIF1<0.其中正確的結論有____.(寫出所有正確結論的序號)【答案】①③④【分析】根據平行四邊形的性質及全等三角形的判定和性質可判斷①;結合圖形可判斷②;利用平行四邊形的性質及全等三角形的判定和性質,對頂角的性質可判斷③;利用平行四邊形的性質及三角形的面積公式可判斷④.【詳解】解:∵平行四邊形ABCD中,E是BD的中點,∴BE=DE,AD∥BC,AD=BC,∴∠MDE=∠NBE,∠DME=∠BNE,∴?DME??BNE,∴DM=BN,∴AM=CN,故①正確;由圖可得:BM>AB≠AD=BC,故②錯誤;連接AE、CE,四邊形ABCD為平行四邊形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,∵平行四邊形ABCD中,E是BD的中點,∴BE=DE,∴?ADE??CBE,∴AE=CE,∠AED=∠CEB,點A、E、C三點共線,故③正確;如圖所示:過點D、E兩點向BC作垂線分別為Q和P點,∵E是BD的中點,且點E為平行四邊形對角線的交點,∴DQ=2EP,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故④正確;故答案為:①③④.【點睛】題目主要考查平行四邊形的性質,全等三角形的判定和性質等,理解題意綜合運用這些知識點是解題關鍵.10.(2022·福建·模擬預測)在平面直角坐標系SKIPIF1<0中,點SKIPIF1<0都在反比例函數(shù)SKIPIF1<0的圖象上,且SKIPIF1<0.現(xiàn)給出以下說法:①若A,O,B三點共線,則SKIPIF1<0;②若SKIPIF1<0,則A,O,B三點共線;③線段OA長度的最小值是SKIPIF1<0;④以A,O,B為頂點的三角形不可能是直角三角形.其中正確的是__________.(寫出所有正確說法的序號)【答案】③【分析】根據反比例函數(shù)的圖像性質及兩點間的距離公式逐個分析求解即可.【詳解】解:對于①:直線AO的解析式為SKIPIF1<0,當A,O,B三點共線時,點SKIPIF1<0在直線AO上,∴SKIPIF1<0,即:SKIPIF1<0,整理得到:SKIPIF1<0,又SKIPIF1<0,此時A、B兩點重合,而已知前提是A,O,B三點共線,即A點與B點不重合,故①錯誤;對于②:當SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,整理得到:SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,而A,O,B三點共線時,由①中可知SKIPIF1<0,∴由SKIPIF1<0推不出A,O,B三點共線,故②錯誤;對于③:∵SKIPIF1<0,∴SKIPIF1<0,故③正確;對于④:當以SKIPIF1<0為直角三角形的直角頂點時:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,整理得到:SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴只需要滿足:SKIPIF1<0,此時△ABO必定是以A為直角的直角三角形,故④錯誤;故答案為:③.【點睛】本題考查了反比例函數(shù)的圖像及性質、兩點之間距離公式及完全平方式的變形,熟練掌握圖形的性質,計算過程中細心即可.三、解答題11.(2022秋·福建泉州·八年級統(tǒng)考期末)如圖,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)試說明SKIPIF1<0與SKIPIF1<0滿足什么等量關系時,點D、點C、點E三點共線.(2)連接SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于F點,若點F恰好是線段SKIPIF1<0的中點,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)見解析【分析】(1)由題意易證SKIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0,由同角的余角可知SKIPIF1<0,由三角形的內角和可得SKIPIF1<0,當SKIPIF1<0時,可得SKIPIF1<0,求得SKIPIF1<0,即可證明結論;(2)如圖,作輔助線,構建全等三角形,證明SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,再證明SKIPIF1<0,可得結論.【詳解】(1)當SKIPIF1<0時,點D、點C、點E三點共線.理由如下:在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0故當SKIPIF1<0時,點D、點C、點E三點共線;(2)證明:如圖,過A作SKIPIF1<0于M,∵SKIPIF1<0,∴SKIPIF1<0,.∵F是SKIPIF1<0的中點,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0.【點睛】本題考查全等三角形的判定和性質、三角形的內角和定理,解題的關鍵是靈活運用全等三角形的性質和判定解決問題,屬于中考??碱}型.12.(2023秋·河北邯鄲·九年級統(tǒng)考期末)如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,動點SKIPIF1<0從點SKIPIF1<0出發(fā),沿SKIPIF1<0以每秒5個單位長度的速度向終點SKIPIF1<0運動,過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,將線段SKIPIF1<0繞點SKIPIF1<0逆時針旋轉90°得到線段SKIPIF1<0,連接SKIPIF1<0.設點SKIPIF1<0的運動時間為SKIPIF1<0秒SKIPIF1<0.(1)線段SKIPIF1<0的長為__________,線段SKIPIF1<0的長為__________(用含SKIPIF1<0的代數(shù)式表示);(2)當點SKIPIF1<0與點SKIPIF1<0重合時,求SKIPIF1<0的值;(3)當SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點共線時,求SKIPIF1<0的值;(4)當SKIPIF1<0為鈍角三角形時,直接寫出SKIPIF1<0的取值范圍.【答案】(1)5t;3t(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0或SKIPIF1<0【分析】(1)根據路程SKIPIF1<0速度SKIPIF1<0時間即可求出SKIPIF1<0;再由勾股定理求得SKIPIF1<0,然后證SKIPIF1<0,得SKIPIF1<0,即可求出SKIPIF1<0,(2)當點SKIPIF1<0與點SKIPIF1<0重合時,則SKIPIF1<0即可;(3)當SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點共線時,可得SKIPIF1<0,根據相似三角形對應邊成比例,即可得出關于SKIPIF1<0的方程;(4)過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,當點SKIPIF1<0在SKIPIF1<0上時,SKIPIF1<0,當點SKIPIF1<0在SKIPIF1<0左邊時,SKIPIF1<0都為鈍角,求出點SKIPIF1<0在SKIPIF1<0上時,SKIPIF1<0的值,當點SKIPIF1<0在SKIPIF1<0邊上時,SKIPIF1<0,若點SKIPIF1<0在SKIPIF1<0外,則SKIPIF1<0為鈍角,再利用相似求出點SKIPIF1<0在SKIPIF1<0上時的SKIPIF1<0,從而解決問題.【詳解】(1)解:SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市生活垃圾分類處理合同3篇
- 醫(yī)療設備維護服務合同2篇
- 合作銷售平房合同范例
- 旅游住宿合同范例
- 勞務安裝合同范例
- 水產養(yǎng)殖業(yè)合同范例
- 委托代簽代理合同范例
- 浴池外包合同范例
- 民間購房屋合同范例
- 合資合伙協(xié)議合同范例
- 10kv電力施工方案
- 某港口碼頭工程施工組織設計
- 2024年部編版語文五年級上冊全冊單元檢測題及答案(共8套)
- 2024基層醫(yī)療機構院感防控管理能力提升培訓考核試題及答案
- 普通外科國家臨床重點??平ㄔO項目申報書
- 2020海灣JTW-LD-GST85B纜式線型感溫火災探測器
- 微測網題庫完整版行測
- 2024中華人民共和國農村集體經濟組織法詳細解讀課件
- 110kV變電站專項電氣試驗及調試方案
- 2024應急管理部國家自然災害防治研究院公開招聘34人(高頻重點提升專題訓練)共500題附帶答案詳解
- 俄語入門智慧樹知到期末考試答案章節(jié)答案2024年吉林師范大學
評論
0/150
提交評論