新高考新題型第19題新定義壓軸解答題歸納(解析版)_第1頁
新高考新題型第19題新定義壓軸解答題歸納(解析版)_第2頁
新高考新題型第19題新定義壓軸解答題歸納(解析版)_第3頁
新高考新題型第19題新定義壓軸解答題歸納(解析版)_第4頁
新高考新題型第19題新定義壓軸解答題歸納(解析版)_第5頁
已閱讀5頁,還剩97頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

11 ,?yn),記M(α,β)=[(x1+y1-|x1-y1|)+(x2+y2-|x2-y2|)+?(xn+yn-|xn-yn|)].+x1)+(x2+x2)+(x3+x3)+(x4+x4)]=x1+x2+x3+x4為奇數(shù),此時B中有n+1個元素,下證其為滿足題意元素最多的集合.i=yi=l,此時M(α,β)≥1不滿足題意,故B中最多有n+1個元素.故B為滿足題意的集合. nn}的前n項和222=11=1j≤rj+1+rj-1,j=1,2,?,m-1,求rn;(Ⅲ)證明:存在0≤p<q≤m,0≤r<s≤m,使得Ap+Bs=Aq+Br.=0,r1=1,r2=1,r3=2.i0123ai213Ai0236i133Bi0147rk0112n≤m且rn∈N,n所以r0=0,r1=1,又因為2rj≤rj-1+rj+1,則rj+1-rj≥rj-rj-1,即rm-rm-1≥rm-1-rm-2≥...≥r1-r0=1,可得rj+1-rj≥1,反證:假設(shè)滿足rn+1-rn>1的最小正整數(shù)為1≤i≤m-1,當(dāng)j≥i時,則ri+1-rj≥2;當(dāng)i≤j-1時,則rj+1-rj=1,則rm=(rm-rm-1)+(rm-1-rm-2)+...+(r1-r0)+r0≥2(m-i)+i=2m-i,又因為1≤i≤m-1,則rm≥2m-i≥2m-(m-1)=m+1>m,所以假設(shè)不成立,rn+1-rn=1成立,所以rn=0+1×n=n,n∈N.m≥Bm,設(shè)Sn=An-Br,1≤n≤m,根據(jù)題意可得Sn≥0且Sn為整數(shù),且rK≠m(若rK=m時,Br+1=Bm+1不存在),則AK-Br≥m,AK-Br+1<0,所以br+1=Br+1-Br=(AK-Br)-(AK-Br+1)>m,所以對任意1≤n≤m,n∈N,均有Sn≤m-1,①若存在正整數(shù)N,使得SN=AN-Br=0,即AN=Br,取r=p=0,q=N,s=rN,使得AP+Bs=Aq+Br,②若不存在正整數(shù)N,使得SN=0,n3344所以必存在1≤X<Y≤m,使得SX=SY,即AX-Br=AY-Br,可得AX+Br=AY+Br,取p=X,s=rY,q=Y,r=rX,使得Ap+Bs=Aq+Br,若Am<Bm,設(shè)Sn=Br-An,1≤n≤m,根據(jù)題意可得Sn≤0且Sn為整數(shù),反證法:假設(shè)存在正整數(shù)K,使得SK≤-m,則Br-AK≤-m,Br+1-AK>0,所以br+1=Br+1-Br=(Br+1-AK)-(Br-AK)>m,所以對任意1≤n≤m,n∈N,均有Sn≥1-m,①若存在正整數(shù)N,使得SN=Br-AN=0,即AN=Br,取r=p=0,q=N,s=rN,使得AP+Bs=Aq+Br,②若不存在正整數(shù)N,使得SN=0,n∈{-1,-2,?,1-m},且1≤n≤m,所以必存在1≤X<Y≤m,使得SX=SY,即AX+Br=AY+Br,可得AX+Br=AY+Br,取p=X,s=rY,q=Y,r=rX,使得Ap+Bs=Aq+Br.綜上所述,存在0≤p<q≤m,0≤r<s≤m,使得Ap+Bs=Aq+Br.3ai+2,?,ai+j(j≥0),使得ai+ai+1+ai+2+?+ai+j=n,則稱Q為m-連續(xù)可表數(shù)列.3k為20-連續(xù)可表數(shù)列,且a1+a2+?+ak<20,求證:k≥7.2=11=21+a2=2+1=3,a3=4,a2+a3=1+4=5,由于Q為20-連續(xù)可表數(shù)列,且a1+a2+?+ak<20,所以其中必有一項為負(fù)數(shù).55k=?=an=0,所以k≥7符合題意,故k≥7.4①a1+p≥0,且a2+p=0;4②a4n-1<a4n(n=1,2,?);{am+an+p,am+an+p+1}(m=1,2,?;n=1,2,?).n}是否可能為?2數(shù)列?說明理由;n}是?05;因為p=2,a1=2,a2=-2,所以a1+a2+p=2,a1+a2+p+1=3,3=-2,所以a3?{a1+a2+p,a1+a2+p+1},1≥0,a2=0;m+1},因此a3=a1或a3=a1+1,a4=0或a4=1,4=1 2又因為a4=a1+a3或a4=a1+a3+1 2或a1=0. 2 21=0假設(shè)n≤k(k≥0)時命題成立.當(dāng)n=k+1時,4(k+1)+1=a4k+5=aj+(4k+5-j),利用性質(zhì)③:{aj+a4k+5-j|j∈N*,1≤j≤4k+4}={k,k+1},此時可得a4k+5=k+1,j+a4k+6-j|j∈N*,1≤j≤4k+5}={k,k+1},此時可得a4k+6=k+1,{aj+a4k+8-j|j∈N*,2≤j≤4k+6}={k+1,k+2},此時可得a4k+8=k+2,{aj+a4k+7-j|j∈N*,1≤j≤4k+6}={k+1},又因為a4k+7<a4k+8,此時可得a4k+7=k+1,5=a4×1+1=1;m+n=am+n+p∈{am+p+an+p,am+p+an+p+1}={bmm+bn+1},由于b1=a1+p≥0,b2=a2+p=0,b4n-1=a4n-1+p<a4n+p=b4n,n}為?0數(shù)列,664n+i=n-p(i=1,2,3),a4n+1=n+1-p;S11-S10=a11=a4×2+3=2-p≥0,S9-S10=-a10=-a4×2+2=-(2-p)≥0,,?,a10≤0j≥0(j≥11),滿足題意.?,n},ai+aj,ai-aj兩數(shù)中至少有一個屬于A,則稱集合A具有性質(zhì)P.經(jīng)檢驗A={1,0,-1{符合題意,綜上a+b=-1;不妨設(shè)B={-bk,-bk-1,...,-b1,0,a1,a2,...,al{,其中k+l=5,0<a1<...<al,0<b1<...<bk,根據(jù)題意{a1-al,...,al-1-al{?{-bk,-bk-1,...,-b1{,3=b1+b2=3a1,22,?,an{(n≥3(,集合T?2iij=1,j≠i例如lT(a2(=dT(a2,a1(+dT(a2,a3(+dT(a2,a4(+?+dT(a2,T(a2(的值及l(fā)T(a4(的最大值;T(a1(,?,lT(an(中任意刪去兩個數(shù),記剩下的數(shù)的和為M,T(a2T(a22(=01(=dT(a4,a3(=1所以lT(a4(最大值為2.T(a1(,?,lT(an(中的最大值為lT(ak(,由定義,lT(ak(≤n-1,若存在lT(ak(=lT(am(=n-1,k≠m,m于是除lT(ak(外,剩余的lT(ai(≤n-2由定義,T中恰有C個元素,lT(a1(+?+lT(an(=C,設(shè)刪去的兩個數(shù)為A,B,則lT(a1(+?+lT(an(-A-B≥C-(n-1(-(n-2(=n2-n+3,ij所以M的最小值為n2-n+3.設(shè)lT(ai(,i=1,2,?,n中的一個最大值為lT(ak(,由lT(ak(<n-1得lT(ak(≤n-2T(au,ak(=1考慮lT(au(=dT(au,a1(?+dT(au,ak(+?,lT(ak(=dT(ak,a1(?+dT(ak,au(+?T(au(≤lT(ak(T(au,ak(+dT(ak,av(+ (2)若m為集合A2n6={1,2772n的含有n+2個元素的子集B={n-1,n,n+1,?,2n},B中任意4個元素之和一定不小于(n-1)+n+(n+1)+(n+2)=4n+2,所以當(dāng)m≤n+2時,m一定不是集合A2n的“相關(guān)數(shù)”,因此若m為集合A2n即若m為集合A2n先將集合A2n的元素分成如下n組:Ci=(i,2n+1-i),(1≤n),對于A2n的任意一個含有n+3個元素的子集P,必有三組Ci,Ci,Ci同屬于集合P,再將集合A2n的元素剔除n和2n后,分成如下n-1組:Cj=(j,2n-j),(1≤j≤n-1),對于A2n的任意一個含有n+3個元素的子集P,必有三組Dj同屬于集合P,不妨設(shè)Dj與Ci無相同元素,此時這4個元素之和[i1+(2n+1-i1)+(2n-j4)]=4n+1, n≤2an-1.不妨設(shè)x1<x2<x3<x4<x5.所以x2=x1+1,x4=x5-1,x3=x2+1或x3=x4-1.對于集合C={n+1-x5,n+1-x4,n+1-x3,n+1-x2,n+1-x1},因為1≤x1<x2<x3<x4<x5≤n,所以1≤n+1-xi≤n,i=1,2,3,4,5,n+1-x5<n+1-x4<n+1-x3<n+1-x2<n+1-x1,因為x2=x1+1,x4=x5-1,x3=x2+1或x3=x4-1.所以n+1-x2=n+1-x1-1,n+1-x4=n+1-x5+1,n+1-x3=(n+1-x4)+1或n+1-x3=(n+1-x2)-1,所以集合C也是自鄰集.所以B≠C.對應(yīng).當(dāng)n≥4時,an-1=b2+b3+?+bn-1,an=b2+b3+?+bn-1+bn,88顯然an=an-1+bn.n≤an-1.鄰集.此時的自鄰集的最大元素為m,可將此時的自鄰集分為n-4個;含有最大數(shù)為3的集合個數(shù)為b3,??,含有最大數(shù)為n-3的集合個數(shù)為bn-3.則這樣的集合共有b2+b3+?+bn-3個.綜上可得bn=b2+b3+?+bn-3+bn-1+1≤b2+b3+?+bn-3+bn-1+bn-2=an-1,所以bn≤an-1,故n≥4時,an≤2an-1得證.1|f(x1(-f(x2(|<k|x1-x2|,則稱f(x(為[a,b[上的“k類函數(shù)”.1f(x1(-f(x2(|<1.有1≤x1<x2≤2,2<x1+x2<4,所以2<<3,|f(x1(-f(x2(|=+x1(-+x2=(x1-x2(<3|x1-x2|,(2)因為f,(x(=axex-x-lnx-1,f(x1(-f(x2(|<2|x1-x2|,不妨設(shè)x1<x2,則-2(x2-x1(<f(x1(-f(x2(<2(x2-x1(,故f(x1(+2x1<f(x2(+2x2且f(x1(-2x1>f(x2(-2x2,-2≤f,(x(≤2,由f,(x(≤2可轉(zhuǎn)化為a≤,令g(x(=,只需a<g(x(min,(x(=(1+x((lnx-x(,令u(x(=-2-lnx-x,u(x(在[1,e[單調(diào)遞減,99所以u(x(≤u(1(=-3<0,g,(x(<0,故g(x(在[1,e[單調(diào)遞減,g(x(min=g(e(=,由f,(x(≥-2可轉(zhuǎn)化為a≥,令h(x(=,只需a≥h(x(max,(x(=(1+x((xlnx-x(,令m(x(=2-lnx-x,m(x(在[1,e[單調(diào)遞減,,e[使m(x0(=0,即2-lnx0-x0=0,即lnx0=2-x0,x0=e2-x,h(x(max=h(x0(==,故≤a≤.f(x1(-f(x2(|<2|x1-x2|,不妨設(shè)1≤x1<x2≤2,當(dāng)|x1-x2|<時,|f(x1(-f(x2(|<2|x1-x2|<1;當(dāng)≤|x1-x2|<1時,因為f(1(=f(2(,-1<x1-x2≤-|f(x1(-f(x2(|=|f(x1(-f(1(+f(2(-f(x2(|≤|f(x1(-f(1(|+|f(2(-f(x2(|<2(x1-1(+2(2-x2(=2(x1-x2+1(≤2(-+1(=1,f(x1(-f(x2(|<1.2(2024·山東·高三校聯(lián)考階段練習(xí))定義函數(shù)fn(x(=1-x+-+?+(-1(n(n∈N*(.(1)求曲線y=fn(x(在x=-2處的切線斜率;(3)討論函數(shù)fn(x(的零點個數(shù),并判斷fn(x(是否有最小值.若fn(x(有最小值m﹐證明:m>1-ln2;若fn(x(沒有最小值,說明理由.【解析】(1)由f(x(=-1+x-x2+?+(-1(nxn-1,可得f(-2(=-1-2-22-?-2n-1=-=1-2n,所以曲線y=fn(x(在x=-2處的切線斜率1-2n.所以k≤=對任意x∈R恒成立,(x)=,(x)>0解得x<0,或x>4;由g,(x)<0解得0<x<4,故g(x)的最小值為g(0)=-1,(3)f(-1(=-1-1-?(-1(=-n,當(dāng)x≠-1時,f(x(=-1+x-x2+?+(-1(nxn-1=-=,因此當(dāng)n為奇數(shù)時,fn(x(=1-x+-+?+-,此時f(x(=則f(x(<0,所以fn(x(單調(diào)遞減.此時fn(0(=1>0,f1(x(=1-x顯然有唯一當(dāng)n≥2時,fn(2(=1-2+-+?+-<0且當(dāng)x>2時,fn(x(=(1-x(+-+?+-=(1-x(+-x(+?+-x(<1-x,由此可知此時fn(x(不存在最小值.當(dāng)n=2k(k∈N*(時,即當(dāng)n為偶數(shù)時,fn(x(=1-x+-+?-+,此時f(x(=由f(x(>0,解得x>1;由f(x(<0,解得x<1則fn(x(在(-∞,1[上單調(diào)遞減,在(1,+∞(上單調(diào)遞增,故fn(x(的最小值為fn(1(=(1-1(+-+?+-+>0,即fn(x(≥fn(1(>0,所以當(dāng)n為偶數(shù)時,fn(x(沒有零點.設(shè)h(x(=ln(1+x(-(x>0(,,(x(=-=>0,(x>0(.所以h(x(在(0,+∞(上單調(diào)遞增,h(x(>h(0(=0,即(x>0(.令x=可得ln>當(dāng)n=2k(k∈N*(時1-f2k(1(=1-+- n+1 +?+- +?+-=1+++???+-2++?+=1+++???+-(1++?+(+ln=ln=ln2,從而當(dāng)n為偶數(shù)時,fn(x(沒有零點,存在最小值m>1-ln2.當(dāng)n為偶數(shù)時,fn(x(沒有零點,存在最小值m>1-ln2. 示.(1)已知函數(shù)f(x)=ex+alnx-x2,寫出其二階導(dǎo)函數(shù)并討論其二階導(dǎo)函數(shù)單調(diào)性.1項.我們稱該數(shù)列為y=f(x)的“n階導(dǎo)數(shù)列”x+alnx-x2,函數(shù)定義域為(0,+∞(,[f'ex+-2x,[f'(x)]2=ex--2,[f'(x)]3=ex+,3=ex+>0恒成立,[f'(x)]2在(0,+∞(上單調(diào)遞增,3=ex+=0,則a=-,設(shè)m(x(=-,x∈(0,+∞(,則m'(x(=-exx2(3+x(<0恒成立,且m(x(=-∈(-∞,0(,故存在唯一的x=x0滿足a=-,2在(0,+∞(上單調(diào)遞增;a<0時,存在唯一的x=x0滿足a=-,(x)[1=nxn-1,[g'(x)[2=n(n-1(xn-2,?,②存在,取h(x(=-ex,a1=h(1(=-e,則[h'(x([n=-ex,則an+1=-en+1,n=-en,an+1-an=en-en+1=en(1-e(<0,4然對數(shù)的底數(shù),設(shè)函數(shù)F(x(=af(x(-g(x(,4(1)若a=e,求函數(shù)y=F(x(的單調(diào)區(qū)間,并寫出函數(shù)y=F(x(-m有三個零點時實數(shù)m的取值范圍;2分別為函數(shù)y=F(x(的極大值點和極小值點,且不等式F(x1(+tF(x2(>0對任(3)對于函數(shù)y=f(x(,若實數(shù)x0滿足f(x0(f(x0+F(=D,其中F、D為非零實數(shù),則x0稱為函數(shù)f(x(的“F-D-篤志點”.x>0x>0x<0①已知函數(shù)f(x(=②定義在R上的函數(shù)f(x(滿足:存在唯一實數(shù)m,對任意的實數(shù)x,使得f(m+x(=f(m-x(恒成立或f(m+x(=-f(m-x(恒成立.對于有序?qū)崝?shù)對(F,D(,討論函數(shù)f(x(“F-D-篤志點”個數(shù)的奇偶性,并【解析】(1)F(x(=ef(x(-g(x(=ex+1-ex-e-x-x,F(xiàn),(x(=ex+1-e+e-x-1=(ex-1((e-e-x(,當(dāng)x<-1時,ex-1<0,e-e-x<0,故F,(x(>0,函數(shù)單調(diào)遞增;當(dāng)-1<x<0時,ex-1<0,e-e-x>0,故F,(x(<0,函數(shù)單調(diào)遞減;當(dāng)x>0時,ex-1>0,e-e-x>0,故F,(x(>0,函數(shù)單調(diào)遞增;(2)F(x(=af(x(-g(x(=a(ex-x(-(e-x+x(,F(xiàn),(x(=af(x(-g(x(=a(ex-1(+(e-x-1(=x-1((a-e-x(,取F,(x(=0,得到x=0或x=-lna,當(dāng)x∈(-lna,+∞(時,F(xiàn),(x(>0,函數(shù)在(-lna,+∞(上單調(diào)遞增,故x1=0是極大值點,x2=-lna是極小值點,F(xiàn)(x1(+tF(x2(=a-1+t(alna+lna-a+1(>0恒成立,F(xiàn)(x1(=a-1<0,F(xiàn)(x2(=alna+lna-a+1<F(x1(<0,故t<0,設(shè)h(a(=a-1+t(alna+lna-a+1(,a,(a(=1+t設(shè)m(a(=lna+,則m,(a(=-=<0恒成立,故m(a(在(0,1(上單調(diào)遞減,m(a(>m(1(=1,當(dāng)t≤-1時,h,(a(=1+tlna+<0,函數(shù)h(a(單調(diào)遞減,h(a(>h(1(=0;a0(=0,(3)①f(x0(f(x0+1(=1有三個不等的實數(shù)根,當(dāng)-1<x0<0時,x0+1>0,故=1,即a=ex+1-x0,令g(x(=ex+1-x(-1<x<0),則g/(x(=ex+1-1>0在-1<x<0上恒成立,故g(x(=ex+1-x在(-1,0(上則x+(2a+1(x0+a2+a-1=0,由于x+(2a+1(x0+a2+a-1=0至多有兩個根,令w(x(=x2+(2a+1(x+a2+a-1,其中Δ=(2a+1(2-4(a2+a-1(=5>0,(2-2-=1,w(x(=x2+(2a+1(x+a2+a-1的圖象的對稱軸為x=-a-<-,故w(x(=x2+(2a+1(x+a2+a-1在x∈(-∞,-1(上有兩個不相等的實數(shù)根,②定義在R上的函數(shù)f(x(滿足:存在唯一實數(shù)m,對任意的實數(shù)x,使得f(m+x(=f(m-x(恒成立,故f(x0(=f(2m-x0(,f(x0+F(=f(2m-x0-F(,因為f(x0(f(x0+F(=D,所以f(2m-x0(f(2m-x0-F(=D,即f(2m-x0-F(f[(2m-x0-F(+F]=D,比較2m-x0-F與x0的大小關(guān)系,m(m-+F(=D,則有fm-fm+=D成立,故對于有序?qū)崝?shù)對(F,D(,函數(shù)f(x(“F-D-篤志點”個數(shù)為奇數(shù)個,同理,對于定義在R上的函數(shù)f(x(滿足:存在唯一實數(shù)m,對任意的實數(shù)x,使得f(m+x(=-f(m-x(恒成立,故f(x0(=-f(2m-x0(,f(x0+F(=-f(2m-x0-F(,因為f(x0(f(x0+F(=D,所以[-f(2m-x0([?[-f(2m-x0-F([=D,即f(2m-x0(f(2m-x0-F(=D0則函數(shù)f(x(“F-D-篤志點”個數(shù)為奇數(shù)個,11(2)在平行六面體ABCD-ABC1D1中,AB=AD=2,AA1=3,∠BAD=∠BAA1=∠DAA1=60°,N為線段②若=[2,-2,0[,求與夾角的余弦知=+2+3,=-++2,所以+=(+2+3(+(-++2(=3+5,所以+=[0,3,5[;①=++=+-=2+3-=-+2+3,=42+42-8?=4+4-4=2,2-42-6?+2?=-3,—黨——黨所以與的夾角的余弦值為- =a1b2c3+a2b3c1+a3b1c2-a3b2c1-a2b1c3-a1b3c2.若×=x1x2y1y2z2y=2++(-1(---(-1(=3--=(3,-1,-1(.則×=y1z2+z1x2+x1y2-x2y1-z2x1-y2z1=(y1z2-y2z1,z1x2-z2x1,x1y2-x2y1),2與y12z1-y1z2,z2x1-z1x2,x2y1-x1y2),2故S△AOB=22-(2-(2OB——常OBOA 22-(22=2-(z2-y2z1,z1x2-z2x1,x1y2-x2y1(,2=(y1z2-y2z1)2+(z1x2-z2x1)2+(x1y2-x2y1(2,又|OA|2=x+y+z,|OB|2=x+y+z,(?(2=(x1x2+y1y2+z1z2(2,2=2-( 2 2 2△AOB3300小值.設(shè)頂點A在底面BCD的射影為點F,則F為正△BCD的中心,則BE=BCsin60°=b,BF=BE=×b=b,所以,AF=AB2-BF2=b2-b(2=b,VA-BCD=AF?S△BCD, 3因為VA-BCD=VO-ABC+VO-ABD+ 3 S,x-,y-,-=0,即-+--=0,即x+2y-6=0,0為球面上一點,則x+y+z=1,即x0?x-x0,y-y0,z-z0=0,即x0x-x0+y0y-y0+z0z-z0=0,即x0x+y0y+z0z=1,np,則dm=OR?OS==1=1,RS1+x+y、1-z003=3=, 算金帆排練廳對應(yīng)幾何體體積.(棱臺體積公式:V=hS+SS+S)學(xué)好數(shù)學(xué)方能更好的欣賞音樂,比如咱們剛剛聽到的一個復(fù)合音就可以表示為函數(shù)Sx=sinx+等.D=10,DH=46, 所以S上底面=1503,S下底面=,S上底面S下底面==(1-cosx((1+cosx)31=3≤4=. 2時取等號. 2時取等號. S(x(=(sinx+sinx+sin2x(,=≤sin=當(dāng)且僅當(dāng)x=π-2x,即x=取等號. ab≤, (x)=(sinx+sinxcosx)2=sinx?+sinxcosx?32≤+2= 當(dāng)且僅當(dāng)sinx=時取等號.2(x(=(sinx+sinxcosx)2=?sinx+sinx?2cosx2≤=+sin2x-sin2x+2根據(jù)二次函數(shù)知識可知當(dāng)sinx=23取得最大值,(x)≤;|F=4|F=4E=fV=4!E=6V=6E=12V=12E=30V=8E=12V=20E=30 2V2=所以總體積為V=V1+6V2=. ×=+11f(x+T)=x+T,Tf(x)=Tx.所以方程組:{y=axy=x有解,消去y得ax=x,顯然x=0不是方程ax=x的解,所以存在非零常數(shù)T,使aT=T,于是對于g(x)=ax有g(shù)(x+T)=ax+T=aT?ax=T?ax=Tg(x),所以存在非零常數(shù)T,即cos(mx+mT)=Tcosmx.故要使cos(mx+mT)=Tcosmx成立,只有T=±1,當(dāng)T=-1時,cos(mx-m)=-cosmx成立,7.將函數(shù)f(x)的圖象按向量=(m,n(平移指的是:當(dāng)m>0時,f(x)圖形向右平移m個單位,當(dāng)m<02(x(-mg(x(-1≤0恒成立,求實數(shù)m的取值范圍.(2)函數(shù)g(x(的最小正周期為T==π.t(=t2-mt-1,t(≤0在[2,3[上恒成立,解得m≥,∴f(x+1)+f(x)=0,f(x+a)+af(x)=sinω(x+a)-1+asinωx-a=0對任意的x都成立,*,令f(x(=0,解得x=+(k∈N).*11(2)由=(-3,1)為h(x)=msin(x-=msinx-mcosx的相伴特征向量知:m=-2.所以φ(x)=h-=-2sin--=-2sin-=2cos.設(shè)P=-x2(*)∵-2≤2cosx≤2,∴-≤2cosx-≤-,.又∵-x2≤,f(x)+kf>0,x+>-sin(x+恒成立.所以k>-tan(x+max=-3;k<-tanx+min,由于<x+≤,所以tan(x+的最大值為tan=1,所以k<-tan(x+min=-1 邊作等邊三角形ABC.設(shè)∠AOB=α.即AB=3,于是四邊形OACB的周長為OA+OB+2AB=3+23;所以O(shè)B+OA≥OC,所以O(shè)C≤3,不妨設(shè)AB=x,則+=0,解得x=7,所以cos∠AOC==,所以AB=5-4cosα,0<α<π,于是四邊形OACB的面積為S=S△AOB+S△ABC=OA?OB?sinα+AB2=sinα+(5-4cosα)=sinα-3cosα+=2sin(α-+, ,其中為與y軸方向相同的單位向量.若對任意的正整數(shù)n,都有f(n+1(>f(n(,則稱{An{為T點列.n(2)若{An{為T點列,且a2>a1.=f(n(=?=-,f(n+1(-f(n(=---=>0,即f(n+1(>f(n(,n∈N?,n?=an+1-an,因為{An{為T點列,所以f(n+1(-f(n(=an+2-an+1-(an+1-an(>0,n∈N?,又因為a2>a1,所以a2-a1>0.所以對{An{中連續(xù)三點Ak、Ak+1、Ak+2,都有ak+2-ak+1>ak+1-ak,ak+2>ak+1>ak.因為=(1,ak+1-ak(,=(1,ak+2-ak+1(,k+2-ak+1>ak+1-ak,故因為?=-1+(ak-ak+1((ak+2-ak+1(<0,kAk+1Ak+2=<0,則∠AkAk+1Ak+2為鈍角,所以△AkAk+1Ak+2為鈍角三角形;(3)由k<l<m,m≥3.因為{An{為T點列,由(2)知an+2-an+1>an+1-an,n∈N?,所以am+k-am+k-1>am+k-1-am+k-2,am+k-1-am+k-2>am+k-2-am+k-3,?,am+1-am>am-am-1,兩邊分別相加可得am+k-am>am+k-1-am-1,所以am+k-1-am-1>am+k-2-am-2>?>al-al-k,所以am+k-am>al-al-k,所以am+k-al>am-al-k,A=(m-l+k,am-al-k(,又AlAm+k=又AlAm+k=——4n4nnnnk=(ka1n).對于②,設(shè)k1+k2+k3=,則可得{k1+2k2+5k3=0k1+2k2+k3=0k1+2k2+4k3=0,所以k1+2k2=0,k3=對于③,設(shè)k1+k2+k3+k4=,則可得{k1+k2+k4=0k1+k3+k4=0k2+k3+k4=0,解得k1=k2=k3=-k4(+)+k2(+)+k3(+)=,則(k1+k3)+(k1+k2)+(k2+k3)=,+k3=0k1+k2=0k2+k3=0,解得k1=k2=k3=0,則k1+k2+?+ki-1α—i-黨1+ki+1+???+km=,,?ki-1,ki+1,m全不為零,所以由l1+l2+???+lm=可得=-m—黨代入k1+k2+???+km=可得k1+k2+???+km=,-k1+k2-k1+km=,所以-k1+k2=0,?,-k1+km=0,所以==???=. 1=1為{an{的伴隨數(shù)列.(2)若{an{為一個X數(shù)列,{bn{為{an{的伴隨數(shù)列.2=a1-b1=,b3=2-b2=,b4=|a3-b3=n+1=1 ;4 2 2k=1-bk-1=bk-1,得等比數(shù)列{bn{的公比q==1.n{為等比數(shù)列時,數(shù)列{an{為常數(shù)列.②當(dāng)an=1,an+1=1時,bn+1=bn,n=1,an+1=0時,bn+1=bn,n=0,an+1=1時,bn+1=bn,n=0,an+1=0時,bn+1=0,nn+2≤bn,于是有b2019≤b2017≤b2015≤?≤b1=,22A-A=〈ai-aj|ai,aj∈A〈,記集合A+A和A-A其元素個數(shù)分別為|A+A|,|A-A|.設(shè)n(A(=|A+A|-|A-A|.例如當(dāng)A={1,2{時,A+A={2,3,4{,A-A={-1,0,1{,|A+A|=|A-A|,所以n(A(=0.(2)設(shè)A是由3個正實數(shù)組成的集合且(A+A(∩A=?n=n(An(.*n≥0,求數(shù)列{an{的通項公式.|A+A|=|A-A|,所以n(A(=0,<a<b<c,n(A,(-n(A(=|A,+A,|-|A,-A,|-(|A+A|-|A-A|(=(|A,+A,|-|A+A|(-(|A,-A,|-|A-A|(因0<a<2a<a+b<2b<b+c<2c,因(A+A(∩A=?,所以|A,+A,|-|A+A|=4,因-c<-b<-a<0<a<b<c,a-c<a-b<0<b-a<c-a,b-c<0<c-b,A-A={0,a-b,a-c,b-a,c-a{∪{b-c,c-b{,A-A={a,b,-a,-b{∪{0,c,-c,a所以A-A-A-A=6nA-nA=-2所以nA-nA為定值.法2:nA-n(A)=-2.m=ai+aj,于是A+A=(A+A)∪{0,a1,a2,a3{,A+A=|A+A|+4,于是A-A=(A-A)∪{a1,a2,a3,-a1,-a2,-a3{,從而A-A=|A-A|+6,于是nA-n(A)=-2為定值.*,3≥4,a3*,則4<1+a3<2+a3<2a3,1-a3<2-a3<-1<1<a3-2<a3-1,A3-A3={1-a3,2-a3,-1,0,1,a3-2,a3-1{,3=nA3=A3+A3-A3-A3=-1,不符合題意,3=3,猜想an=n,下面給予證明,故Ak+Ak=2k-2+1=2k-1,Ak-Ak=k-1-1-k+1=2k-1,k=nAk=0,符合題意,Ak+1={1,2,k+1{,ak+1∈N*3+ak+1,?,k+ak+1{,Ak+1-Ak+1={1-k,2-k,3-k,???,0,1,2,?,k-1{∪{1-ak+1,2-ak+1,?,0,1,?,ak+1-1{,若ak+1≥k+2,+ak+1,3+ak+1,?,k+ak+1{的元素個數(shù)小于+1,2-ak+1,?,0,1,?,ak+1-1{的元素個數(shù)k+1=nAk+1=Ak+1+Ak+1-Ak+1-Ak+1<Ak+Ak-Ak-Ak=nAk=0,k+1=k+1,*n=n故數(shù)列{an{的通項公式an=n.n根據(jù)條件,m≥3,且Am-1={1,2,?,m-1},Am-1+Am-1={2,4,?,2m-2},|Am-1+Am-1|=2m-3,Am-1-Am-1={0,±1,±2,?,±(m-2)},|Am-1-An-1|=2m-3,根據(jù)假設(shè),am≥m+1.(i)如果am=m+k(k=1,2,?,m-3),那么屬于Am+Am但不屬于Am-1+Am-1的元素組成的集合是{2m-從而|Am+Am|-|Am-1+Am-1|=k+2.屬于Am-Am,但不屬于Am-1-Am-1的元素組成的集合是{±(m-1),±m(xù),?,±(m+k-1)},從而|Am-Am|-|Am-1-Am-1|=2(k+1),m=-k<0.矛盾!(ii)如果am=m+k(k≥m-2),那么對任意i=1,2,?,m-1,m,am+ai?Am-1+Am-1,從而|Am+Am|-|Am-1+Am-1|=m,同樣對任意i=1,2,?,m-1,±(am-ai(?Am-1-Am-1且±(am-ai(兩兩不同,從而|Am-Am|-|Am-1-Am-1|=2m-2,m=-(m-2)<0,矛盾! <n≤(k∈N*)時,an=(-1)k-1k,記Sn=a1+a2+???***k個————————————k(k+1)-Sk(k-1)=-1)k-1k,?,(-1)k-1=(-1)k-1?k2(k∈N*),所以S2020=1-22+32-42+52-?-622+632-64-64-64-64=1+2+3+?+63-256=-256=1760;Sn=S-n-(k+1)=1-22+32-42+?+(k-2(2-(k-1(2+k2-n-(k+1(=(1+2+?+k(-n-(k+1(=-n-(k+1(=-n?(k+1);Sn=-1-2-3-?-k+n-(k+1)=-+n-(k+1)=-n?[-(k+1)[;<n≤時,Sn=(-1)k-n?k,an=(-1(k-1k,-=k,所以滿足條件的n的個數(shù)為1+3+5+?+63=×32=1024,4+T=an對一切正整數(shù)n都成4n是數(shù)列{an{的前n項和,若≤t對一i=0”;2=a(3)若無窮數(shù)列{an{和{bn{滿足bn=an+1-an,且{an{2=1,n=(a1+a2(=2n;當(dāng)n為奇數(shù)時,Sn=(a1+a2(+a1=2n+1,因為≤t對一切正整數(shù)n恒成立,當(dāng)n為奇數(shù)時,=2+≤3恒成立,故只需t≥3即可;因為{bn{是周期為T的周期數(shù)列,bi=0,bn=an+1-ani=0,即(an+1-an(+(an+2-an+1(+?+(an+T-1-an+T-2(+(an+T-an+T-1(=0,所以an+T-an=0,即an+T=an因為{an{是周期為T的周期數(shù)列,所以an+T=an,即an+T-an=0n+T+1=an+1,an+T=an,即an+T+1-an+1=an+T-an=0n+T+1-an+T=an+1-an,即bn+T=an+T+1-an+T=an+1-an=bn,所以數(shù)列{bn{是周期為T的周期數(shù)列,因為a1+T-a1=(a1+T-aT(+(aT-aT-1(+?+(a3-a2(+(a2-a1(=bT+bT-1+?+b2+b1=0,即bi=0n{是周期為T的周期數(shù)列,且bi=0,2=an+2=b1(n≥1,n∈N(,3==a,b4==1,b5==,b6==,b7==1,b8==a,b9==a,?所以數(shù)列{bn{是周期為T=6,11故點A在Ψ的直線y=1上.令f(t)=3t2x0-2t3,則f′(t)=6tx0-6t2=6t(x0-t).0所以f(t)max=f(x0)=x,f(t)∈(-∞,x].所以y0>x;(x>0).2=3t2則過該點的切線方程是y-t3=3t2(x-t)即y=3t2x-2t3.而對任意的t>0,y=3t2x-2t3的確為曲線y=x3(x>0)的切線.故Ω的包絡(luò)是曲線y=x3(x>0).將2(a-2)x+4y-4a+a2=0整理為a的方程a2+2(x-2)a+4(-x+y)=0,若該方程無解,則Δ=4(x-2)2-16(-x+y)<0,整理得y>+1.猜測Ψ的包絡(luò)是拋物線y=+1. +1在拋物線y=+1上任取一點,則過該點的切線方程是2(a-2)x+4y-4a+a2=0,而對任意的a∈R,2(a-2)x+4y-4a+a2=0確為拋物線y=+1的切線.故Ψ的包絡(luò)是拋物線y=+1. 在平面直角坐標(biāo)系中,若點Mx,y與定點Fc,0(或F-c,0的距離和它到定直線l:x=(或l:x=-22=2c2=12=a2-c2(b>義.這里定點Fc,0是橢圓的一個焦點,直線l:x=稱為相應(yīng)于焦點F的準(zhǔn)線;定點F-c,0是橢圓的另一個焦點,直線l:x=-稱為相應(yīng)于焦點F的準(zhǔn)線.根據(jù)橢圓的這個定義,我們可以把到焦點的距離轉(zhuǎn)化為到準(zhǔn)線的距離.若點Mx,y在橢圓+=1(a c,則點Mx,y到準(zhǔn)線l:x c-x,所以MF=×-x=a-x=a-ex,我們把這個公式稱為橢圓的焦半徑公式.2=92=9,c=12=a2-c2=8,所以x1+x2=2,y1+y2=-,MN=,所以直線MN的方程為y+=(x-1(,即y=x-2,(x2+y2=1=-2,得(x2+y2=1解得:x=-1或x=3,=,-或. 均為三元方程F(x,y,z(=0的解;②以三元方程F(x,y,z(=0的任意解(x0,y0,z0(為坐標(biāo)的點均在曲面S上,則稱曲面S的方程為F(x,y,z(=0,方程F(x,y,z(=0的曲面為S.已知曲面C的方程為+-(1)已知直線l過曲面C上一點Q(1,1所成角的余弦值.從而存在實數(shù)λ,使得=λ,即(x0-1,y0-1,z0-2(=λ(-2,0,-4(,x0-1=-2λy0-1=0,解得x0=1-2λ,y0=1,z0=2-4λ,即點P(1-2λ,1,2-4λ),λ+-=1-4λ+4λ2+1-[1-4λ+4λ2]=1,從而存在實數(shù)t,使得=t,即(x1-2,y1,z1-2(=t(a,b,c(,x1-2=aty1=bt1=2+at,y1=bt,z1=2+ct,即點M(2+at,bt,2+ct),1-2=ct由點M(x1,y1,z1(在曲面C上,得+-=1,2+b2-t2+(22a-c)t=0,2+b2-t2+(22a-c)t=0恒成立,又直線l的方向向量為=(-2,0,-4),|=22=.44Fx,y,z=0.①過點Px0,y0,z0,法向量為=A,B,C的平面的方程;2為空間中的兩個定點,F(xiàn)1F2=2c>0,我們將曲面Γ定義為滿足PF1+PF2=2aa>c的動【解析】(1)①Ax-x0+By-y0+Cz-z0=0,理由如下:設(shè)平面上除Px0,y0,z0任意一點坐標(biāo)為Qx,則?=0,即Ax-x0+By-y0+Cz-z0=0,又Ax0-x0+By0-y0+Cz0-z0=0,故過點Px0,y0,z0,法向量為=A,B,C的平面的方程為Ax-x0+By-y0+Cz-z0=0;②平面的一般方程為Ax+By+Cz+D=0,理由如下:由①可得Ax-x0+By-y0+Cz-z0=0,變形為Ax+By+Cz-Ax0-By0-Cz0=0,令D=-Ax0-By0-Cz0,故平面的一般方程為Ax+By+Cz+D=0;+ ++ +由②可得平面的一般方程為Ax+By+Cz+D=0, x-DAy+z-DC x-DAy+z-DC+DB-令-=b,-令-=b,-=c,+++++x2+y+c2+z2F2=2c>0,PF1+PF2=+x2+y+c2+z2所以x2+y-c2+z2=2a-x2+y+c2+z2移項得=2a-x2+y+c2+z2+x2+y+c2+z2,兩邊平方得x2+y-c2+z2=4a2-4ax2++x2+y+c2+z2,=4a2+y+c2-y-c=4a2+y+c2-y-c2=4a2+4cy,故ax2+y+c2+2x2+a2-c2y2+a2z2=a2a2-c2,兩邊同除以a2a2-c2得,++2=a2-c2,故曲面Γ的方程為++=1b2=a2-c25=λ(a>b>0)表示的橢圓Cλ稱為橢圓+=1(a>b>0)的相似橢圓.5N且OM=F2N,N=4,又點P在F1N的垂直平分線上,=PN,+PF2=PF2+PN=NF2=4>23,滿足橢圓定義,∴曲線C的方程為+y2=1. 3+則離心率e 3+設(shè)Qx0QN=?=,又+=1?y=3-x,QMQN=-kQM≠±.y=k(x+3(,+y2=1,得(1+4k2(x2+83ky=k(x+3(,1+x2=,x1x2=,=1+k2|x1-x2|=1+k2(x1+x2(2-4x1x2=4(,+=5. A(x11(P=3.②直接寫出d(A,B(的最小值≥d(A,B(;P(x,y(滿足d(C,P(=r(r>0(,若動點P所在的曲線所圍成圖形的面積是36,求r的值.則d(A,C(+d(C,B(=max{|x1-x3|,|y1-y3|{+max{|x3-x2|,|y3-y2|{≥|x1-x3|+|x3-x2|≥|x1-x2所以d(A,C(+d(C,B(≥max{|x1-x2|,|y1-y2|{=d(A,B(;(3)設(shè)軌跡上動點P(x,y),則d(C,P(=max{|x-x0|,|y-y0|-x0|或--y0|,所以r=3. A(x1|+|AF2|=(3+22)2+12+(3-22)2+12=(23+6)+(23-6)=43,于是a=23,b=(23)2-(22)2=2,所以橢圓C的標(biāo)準(zhǔn)方程為+=1.(2)設(shè)“共軛點對”[A,B[中點B的坐標(biāo)為B(x,y(,由(1)知,點A(3,1(在橢圓C:+=1上,所以直線l的方程為x+y=0.-3),設(shè)點P(xP,yP(,Q(xQ,yQ(,則+=1+=1+ (xP-xQ)(xP+xQ)+ (yP-yQ)(yP+yQ)4=0,--=,則yP+yQ=-(xp+xQ),有yPyQ=-xPxQ,線段PQ被直線l平分,而|B1B2|=(-3-3(2+(3+3(2=26,則有SBPBQ=26d,(x+y=m+=1消去y得4x2-6mx+3(m2-4(=0,令Δ=36m2-48(m2-4(=0,解得m=±4,即d小于平行直線x+y=0和x+y=4(或x+y=-4)的距離4=22,1在平面直角坐標(biāo)系xOy中,設(shè)點集An={(0,0),(1,0),(2,0),?,(n,0)},Bn={(0,1),(n,1)},Cn={(0,2),(1,2),(2,2),??,(n,2)},n∈N*.令Mn=An∪Bn∪Cn.從集合Mn中任取兩個不同的點,用隨機變量X1表示它們之間的距離.(2)對給定的正整數(shù)n(n≥3),求概率P(X≤n)(用n表示).X的概率分布為P(X=1)==;P(X=2)==;P(X=2)==;P(X=5)==;因為P(X≤n)=1-P(X>n),所以只需考慮X>n的情況,①若b=d,則AB≤n,不存在X>n的取法;②若b=0,d=1,則AB=(a-c)2+1≤n2+1,所以X>n當(dāng)且僅當(dāng)AB=n2+1,③若b=0,d=2,則AB=(a-c)2+4≤n2+4,所以X>n當(dāng)且僅當(dāng)AB=n2+4,④若b=1,d=2,則AB=(a-c)2+1≤n2+1,所以X>n當(dāng)且僅當(dāng)AB=n2+1,綜上可得當(dāng)X>n,X的所有值是n2+1或n2+4,且P(X=n2+1)=,P(X=n2+4)=可得P(X≤n)=1-P(X=n2+1)-P(X= Cn+4,n2+4)=1-.22令f(t)=-tlog2t-(1-t)log2(1-t),t∈(0,1),則f'(t)=-log2t+log2(1-t)=log2-1(, 2 n-1(2) n-1+1=2Pk(k=2,3,?,n),所以Pk=P2?2k-2==(k=2,3,?,n),故Pklog2Pk=log2=-,而P1log2P1=log2=--11,于是H(ξ)=整理得H(ξ)n-1+n-1=n-1n-1n-1n-1n-n-1n-1n-1n-1n-1n-1n-2n-2++-+++-+?++,+?++令Sn=+++?+-11+,則Sn=+++?++,兩式相減得Sn=+++?+-=1-n=2-,所以H(ξ)=-11-+Sn=-11-+2-=2-.PX=ak=xk,PY=ak=yk,xk>0,yk>0,k=1,2,?,n,xk=yk=1.指標(biāo)D(X‖Y)可用來刻畫X和Y的相似程度,其定義為D(X‖Y)=xkln.設(shè)X~B(n,p),0<p<1.k=k,則xk=Cpk(1-p)n-k,yk=Cqk(1-q)n-k.所以D(X‖Y)=Cpk1-pn-kln=ln?kCpk(1-p)n-k+nln?Cpk(1-p)n-k=npln+nln.(2)當(dāng)n=2時,P(X=2)=p2,P(X=1)=2p(1-p),P(X=0)=(1-p)2,記f(p)=D(X‖Y)=p2ln3p2+2p(1-p)ln6p(1-p)+(1-p)2ln3(1-p)2=p2lnp2+2p(1-p)ln2p(1-p)+(1-p)2ln(1-p)2+ln3,則f(p)=4plnp+2p+(2-4p)[ln2p(1-p)+1]-4(1-p)ln(1-p)-2(1-p)=2[lnp-ln(1-p)+(1-2p)ln2],令g(p)=lnp-ln(1-p)+(1-2p)ln2,則g'(p)=+-2ln2>0,所以f'(p)在(3)令h(x(=lnx-x+1,則h'(x(=-1=,當(dāng)0<x<1時,h'(x(>0,h(x(單調(diào)遞增;x(<0,h(x(單調(diào)遞減;所以h(x(≤h(1(=0,即lnx-x+1≤0,當(dāng)且僅當(dāng)x=1時,等號成立,1-x,xk-yk=0,則當(dāng)x>0時,lnx≤x-1,所以ln1-x,xk-yk=0,故D(X‖Y)=xkln≥xk1-=(xk-yk(=當(dāng)且僅當(dāng)對所有的k,xk=yk時等號成立.4i4123456789數(shù)學(xué)成績xi知識競賽成績yi數(shù)學(xué)成績xi知識競賽成績yi5(yi-(2=149450,(xi-((yi-(=21650.*i排名的樣本相關(guān)系數(shù).==參xi2=r==≈≈0.70;r==≈≈0.70;Ri=Si=,R=S=,從而{Ri{和{Si{的平均數(shù)都是==.i-(2=R-2Ri+2=R-N2=-=N(N+1)(N-1)同理可得(Si-(2=,由于d=(Ri-Si(2=[(Ri-(-(Si-([2=(Ri-(2+(Si-(2-2(Ri-((Si-(=2?-2(Ri-((Si-(,所以ρ=(Ri-((Si-( (Si-(2(Ri- (Si-(2-dN(N+1)(N-1)=1-d.52,?,xn的隨機變量,分別記作X和Y.條件概率P(Y=xj∣X=xi(,i,j=1,2,?,n,描述了輸入信號5-p(X=xi(log2p(X=xi(.當(dāng)n=2時,信道疑義度定義為H(Y∣X)=-p(X=xi,Y=xj(log2p(Y=xj∣X=xi(=-[P(X=x1,Y=x1(log2p(Y=x1∣X=x1(+P(X=x1,Y=x2(log2p(Y=x2∣X=x1(+P(X=x2,Y=x1(log2p(Y=x1∣X=x2(+P(X=x2,Y=x2(log2p(Y=x2∣X=x2([p(Y=0∣X=1(=p(0<ω<1,0<p<1).試回答以下問題:①求P(Y=0(的值;②求該信道的信道疑義度H(Y∣X(的最大值.X123456P 2 5 H(X)=-p(X=xi(log2p(X=xi(=log2=log221-ilog2i=log27+log23-log25-≈2.40.p(Y=0(=p(X=0(P(Y=0∣X=0(+p(X=1(P(Y=0∣X=1(=ω(1-p(+(1-ω(p②由題意,p(Y=0∣X=0(=p(Y=1∣X=1(=1-p.所以,H(Y∣X(=-[P(X=x1,Y=x1(log2p(Y=x1∣X=x1(+P(X=x1,Y=x2(log2p(Y=x2∣X=x1(+P(X=x2,Y=x1(log2p(Y=x1∣X=x2(+P(X=x2,Y=x2(log2p(Y=x2∣X=x2([=-[P(X=x1(p(Y=x1∣X=x1(log2p(Y=x1∣X=x1(+p(X=x1(p(Y=x2∣X=x1(log2p(Y=x2∣X=x1(+p(X=x2(p(Y=x1∣X=x2(log2p(Y=x1∣X=x2(+p(X=x2(p(Y=x2∣X=x2(log2p(Y=x2∣X=x2(=-[ω(1-p(log2(1-p(+ωplog2p+(1-ω(plog2p+(1-ω((1-p(log2(1-p([=-plog2p-(1-p(log2(1-p(;其中x1=0,x2=1.令f(p(=-plog2p-(1-p(log2(1-p(f,(p(=-log2p+p--log2(1-p(+(1-p(=-log2p+log2(1-p(=log2.f,(p)<0,f(p)max=f=1. 1=12-2=10;2=10-3=7;3=8-4=4;4=7-5=2;5=7-5=2;6=7-5=2;??所以t2021=2.數(shù)a+1和最大數(shù)a+2,所以數(shù)組的放縮值不會改變.所以當(dāng)t=2時,tn=tn=1,2,3,...恒成立;ii.當(dāng)t≥3時,f1a,b,c=a+1,b+1,c-2,所以t1=b+1-a+1=b-a<c-a=t,或t1=c-2-a+1=t-3,n=tn=1,2,3,...的t的取值只能是2.故集合M={2{.k又因為4k=3+1k=3k+C3k-1+?+C-131+1,設(shè)fia,b,c=ai,bi,ci,i.當(dāng)ai,bi,ci中有唯一最大數(shù)時,不妨設(shè)ai≤bi<ci,則ai+1=ai+1,bi+1=bi+1,ci+1=ci-2,所以i+1-ai+1=bi-ai,ci+1-ai+1=ci-ai-3,ci+1-bi+1=ci-bi-3.i-ai,ci-ai,ci-bi是3的倍數(shù),則bi+1-ai+1,ci+1-ai+1,ci+1-bi+1也是3的倍數(shù),所以bi+3≤ci,則ti≥3,ci+1-bi+1=ci-bi-3≥0,所以ai+1≤bi+1≤ci+1,所以ti+1=ci+1-ai+1=ci-ai-3=ti-3.ii.當(dāng)ai,bi,ci中的最大數(shù)有兩個時,不妨設(shè)ai<bi=ci.則ai+1=ai+2,bi+1=bi-1,ci+1=ci-1,所以i+1-ai+1=bi-ai-3,ci+1-ai+1=ci-ai-3,ci+1-bi+1=ci-bi.i-ai,ci-ai,ci-bi是3的倍數(shù),則bi+1-ai+1,ci+1-ai+1,ci+1-bi+1也是3的倍數(shù),所以ai+3≤bi,則ti≥3,bi+1-ai+1=bi-ai-3≥0,所以ai+1≤bi+1≤ci+1,所以ti+1=ci+1-ai+1=ci-ai-3=ti-3.綜上知,當(dāng)ti≥3時,數(shù)列{ti{是公差為3的等差數(shù)列.當(dāng)ti=3時,由上述分析可得ti+1=0,此時ai+1=bi+1=ci+1=.所以存在k=,滿足fka,b,c的放縮值tk=0. p-1,?;∈{0,1,?,p-2{,記m1⊕m2為m1+m2除以p-1的余數(shù)(當(dāng)m1+m2能被p-1整除時,m1⊕m2(3)已知n=log(p)ab.對x∈X,k∈{1,2,?,p-2{,令y1=a所以ap-1,?=210,?=1.2,?,?,ap-2,?相異,故a≥2,記n=log(p)ab?c,n1=log(p)ab,n2=log(p)ac,n=pm1+b,an=pm2+c,故an+n=pm1+bpm2+c,故an+n≡bc(modp),設(shè)n1+n2=tp-1+s,0≤s≤p-2,則n1⊕n2=s,n≡b?c(modp)=bc(modp),其中0≤n≤p-2,故s=n即log(p)ab?c=log(p)ab⊕log(p)ac.n=an,?+m1p,an=an,?+m2p,an,?×an,?=an,??an,?+kp,n?n=an.??an,?+m1an.?+m2an.?+m1m2p+kp,可知an,??an,?=an?n,?.2,?p-2,?兩兩不同,p-1,?=ai,?,p-1-ai=aiap-1-i-1可以被p整除,于是ap-1-i-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論