中考數(shù)學(xué)幾何模型專項(xiàng)復(fù)習(xí) 模型16 全等三角形-半角模型-(原卷版+解析)_第1頁
中考數(shù)學(xué)幾何模型專項(xiàng)復(fù)習(xí) 模型16 全等三角形-半角模型-(原卷版+解析)_第2頁
中考數(shù)學(xué)幾何模型專項(xiàng)復(fù)習(xí) 模型16 全等三角形-半角模型-(原卷版+解析)_第3頁
中考數(shù)學(xué)幾何模型專項(xiàng)復(fù)習(xí) 模型16 全等三角形-半角模型-(原卷版+解析)_第4頁
中考數(shù)學(xué)幾何模型專項(xiàng)復(fù)習(xí) 模型16 全等三角形-半角模型-(原卷版+解析)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

全等三角形模型(十六)——半角模型一:正方形中的半角模型【條件】如圖①兩個角共頂點(diǎn),②其中一個角(45o)是另一個角(90o)的一半【結(jié)論】①EF=BE+DF①∶延長CB至點(diǎn)P,使得BP=DF連接AP,第一次全等第二次全等在△ABP和△ADF中在△AEP和△AEF中AB=AD(正方形邊長相等)AP=AF∠ABP=∠ADF=90oo∠PAE=∠FAEBP=DF(構(gòu)造)AE=AE∴△ABP≌△ADF(SAS)∴△AEP≌△AEF(SAS)∴AP=AF,∠1=∠2∴PE=EF∵∠2+∠3=45oo即PB+BE=EF∴∠1+∠3=45oo,∴DF+BE=EF∴∠PAE=∠FAE②EA平分∠BEF,F(xiàn)A平分∠DFE由①得:△AEP≌△AEF,則∠4=∠5,∠AFE=∠P又△APB≌△AFD,∴∠P=∠AFD,∴∠AFE=∠AFD∴EA平分∠BEF,F(xiàn)A平分∠DFE③△EFC的周長等于正方形邊長的2倍由①得:EF=BE+DF,∴△EFC的周長=EF+EC+CF=BE+DF+EC+CF=BC+DC,∴△EFC的周長等于正方形邊長的④如圖:作AM⊥EF,則AM=AB過A作AM⊥EF,則∠AME=∠B=90o。由①得∠1=∠2,AE=AE,∴△ABE≌△AME(AAS)∴AM=AB⑤如圖:∠EAF=45o,則EF2=BE2+FC2【證明】如圖,過點(diǎn)A作AP⊥AF且AP=AF.連接PE∵∠CAB=∠PAF=90o,∠1=∠2第一次全等第二次全等在△ABP和△ACF中在△AEP和△AEF中AB=ACAP=AF∠2=∠1∠PAE=∠FAEAP=AFAE=AE∴△ABP≌△ACF(SAS)∴△AEP≌△AEF(SAS)∴BP=CF,∠ABP=∠C=45oo∴PE=EF∵∠EAF=45oo在Rt△PBE中,PE2=PB2+BE2∴∠1+∠3=45oo,即EF2=CF2+BE2∴∠2+∠3=45ooeq\o\ac(○,巧)eq\o\ac(○,記)eq\o\ac(○,口)eq\o\ac(○,訣)見半角,旋全角,蓋半角,得半角。二:等腰三角形中的半角模型【條件】如圖,△ABC是等邊三角形,△BDC是等腰三角形,且∠BDC=120°,∠MDN=60o,【結(jié)論】①M(fèi)N=BM+CN;②△MAN的周長等于△ABC邊長的2倍;③MD是∠BMN的平分線,ND是∠CNM的平分線【證明】∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°.∵△ABC是等邊三角形,∴∠ABC=∠BAC=∠BCA=60°,∴∠DBA=∠DCA=90°.延長AB至點(diǎn)F,使BF=CN,連接DF,如圖.在△BDF和△CDN中,DB=DC,∠DBF=∠DCN,BF=CN,∴△BDF≌△CDN(SAS),∴∠BDF=∠CDN,∠F=∠CND,DF=DN.∵∠MDN=60°,∴∠BDM+∠CDN=60°,∴∠BDM+∠BDF=60°,即∠FDM=60°=∠MDN.在△DMN和△DMF中,DN=DF,∠MDN=∠MDF,DM=DM,∴△DMN≌△DMF(SAS),∴MN=MF=BM+CN,∠F=∠MND=∠CND,∠FMD=∠DMN,∴△AMN的周長是AM+AN+MN=AM+MB+CN+AN=AB+AC=2邊長.三:對角互補(bǔ)且鄰邊相等的半角模型【條件】如圖,∠B+∠D=180°,∠BAD=2∠EAF,AB=AD,【結(jié)論】①EF=BE+FD;②EA是∠BEF的平分線,F(xiàn)A是∠DFE的平分線.1.(2023·山東·龍口市培基學(xué)校八年級期中)如圖,正方形ABCD的邊長為6,點(diǎn)E,F(xiàn)分別在邊AB,BC上,若F是BC的中點(diǎn),且∠EDF=45°,則DE的長為_____.2.(2023·全國·九年級專題練習(xí))在中,,點(diǎn)在邊上,.若,則的長為__________.1.(2023·浙江·南海實(shí)驗(yàn)學(xué)校旌旗山初中校區(qū)八年級期末)已知:邊長為4的正方形ABCD,∠EAF的兩邊分別與射線CB、DC相交于點(diǎn)E、F,且∠EAF=45°,連接EF.求證:EF=BE+DF.思路分析:(1)如圖1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,∴把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADE',則F、D、E'在一條直線上,∠E'AF=度,……根據(jù)定理,可證:△AEF≌△AE'F.∴EF=BE+DF.類比探究:(2)如圖2,當(dāng)點(diǎn)E在線段CB的延長線上,探究EF、BE、DF之間存在的數(shù)量關(guān)系,并寫出證明過程;拓展應(yīng)用:(3)如圖3,在△ABC中,AB=AC,D、E在BC上,∠BAC=2∠DAE.若S△ABC=14,S△ADE=6,求線段BD、DE、EC圍成的三角形的面積.2.(2023·陜西西安·七年級期末)問題背景:如圖1,在四邊形ABCD中,,,E、F分別是BC,CD上的點(diǎn),且∠EAF=60°,探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是,延長FD到點(diǎn)G,使DG=BE,連接AG,先證明,再證明,可得出結(jié)論,他的結(jié)論應(yīng)是______.實(shí)際應(yīng)用:如圖2,在新修的小區(qū)中,有塊四邊形綠化ABCD,四周修有步行小徑,且AB=AD,∠B+∠D=180°,在小徑BC,CD上各修一涼亭E,F(xiàn),在涼亭E與F之間有一池塘,不能直接到達(dá),經(jīng)測量得,BE=10米,DF=15米,試求兩涼亭之間的距離EF.3.(2023·江蘇·八年級專題練習(xí))問題情境在等邊△ABC的兩邊AB,AC上分別有兩點(diǎn)M,N,點(diǎn)D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.特例探究如圖1,當(dāng)DM=DN時,(1)∠MDB=度;(2)MN與BM,NC之間的數(shù)量關(guān)系為;歸納證明(3)如圖2,當(dāng)DM≠DN時,在NC的延長線上取點(diǎn)E,使CE=BM,連接DE,猜想MN與BM,NC之間的數(shù)量關(guān)系,并加以證明.拓展應(yīng)用(4)△AMN的周長與△ABC的周長的比為.1.(1)如圖①,在四邊形中,,,,分別是邊,上的點(diǎn),且.請直接寫出線段,,之間的數(shù)量關(guān)系:__________;(2)如圖②,在四邊形中,,,,分別是邊,上的點(diǎn),且,(1)中的結(jié)論是否仍然成立?請寫出證明過程;(3)在四邊形中,,,,分別是邊,所在直線上的點(diǎn),且.請畫出圖形(除圖②外),并直接寫出線段,,之間的數(shù)量關(guān)系.2.如圖,在等邊三角形ABC中,點(diǎn)E是邊AC上一定點(diǎn),點(diǎn)D是直線BC上一動點(diǎn),以DE為一邊作等邊三角形DEF,連接CF.(1)如圖1,若點(diǎn)D在邊BC上,直接寫出CE,CF與CD之間的數(shù)量關(guān)系;(2)如圖2,若點(diǎn)D在邊BC的延長線上,請?zhí)骄烤€段CE,CF與CD之間存在怎樣的數(shù)量關(guān)系?并說明理由;(3)如圖3,若點(diǎn)D在邊CB的延長線上,請直接寫出CE,CF與CD之間的數(shù)量關(guān)系.全等三角形模型(十六)——半角模型一:正方形中的半角模型【條件】如圖①兩個角共頂點(diǎn),②其中一個角(45o)是另一個角(90o)的一半【結(jié)論】①EF=BE+DF①∶延長CB至點(diǎn)P,使得BP=DF連接AP,第一次全等第二次全等在△ABP和△ADF中在△AEP和△AEF中AB=AD(正方形邊長相等)AP=AF∠ABP=∠ADF=90oo∠PAE=∠FAEBP=DF(構(gòu)造)AE=AE∴△ABP≌△ADF(SAS)∴△AEP≌△AEF(SAS)∴AP=AF,∠1=∠2∴PE=EF∵∠2+∠3=45oo即PB+BE=EF∴∠1+∠3=45oo,∴DF+BE=EF∴∠PAE=∠FAE②EA平分∠BEF,F(xiàn)A平分∠DFE由①得:△AEP≌△AEF,則∠4=∠5,∠AFE=∠P又△APB≌△AFD,∴∠P=∠AFD,∴∠AFE=∠AFD∴EA平分∠BEF,F(xiàn)A平分∠DFE③△EFC的周長等于正方形邊長的2倍③由①得:EF=BE+DF,∴△EFC的周長=EF+EC+CF=BE+DF+EC+CF=BC+DC,∴△EFC的周長等于正方形邊長的④如圖:作AM⊥EF,則AM=AB過A作AM⊥EF,則∠AME=∠B=90o由①得∠1=∠2,AE=AE,∴△ABE≌△AME(AAS)∴AM=AB⑤如圖:∠EAF=45o,則EF2=BE2+FC2【證明】如圖,過點(diǎn)A作AP⊥AF且AP=AF.連接PE∵∠CAB=∠PAF=90o,∠1=∠2第一次全等第二次全等在△ABP和△ACF中在△AEP和△AEF中AB=ACAP=AF∠2=∠1∠PAE=∠FAEAP=AFAE=AE∴△ABP≌△ACF(SAS)∴△AEP≌△AEF(SAS)∴BP=CF,∠ABP=∠C=45o∴PE=EF∵∠EAF=45oo在Rt△PBE中,PE2=PB2+BE2∴∠1+∠3=45oo,即EF2=CF2+BE2∴∠2+∠3=45ooeq\o\ac(○,巧)eq\o\ac(○,記)eq\o\ac(○,口)eq\o\ac(○,訣)見半角,旋全角,蓋半角,得半角。二:等腰三角形中的半角模型【條件】如圖,△ABC是等邊三角形,△BDC是等腰三角形,且∠BDC=120°,∠MDN=60o,【結(jié)論】①M(fèi)N=BM+CN;②△MAN的周長等于△ABC邊長的2倍;③MD是∠BMN的平分線,ND是∠CNM的平分線【證明】∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°.∵△ABC是等邊三角形,∴∠ABC=∠BAC=∠BCA=60°,∴∠DBA=∠DCA=90°.延長AB至點(diǎn)F,使BF=CN,連接DF,如圖.在△BDF和△CDN中,DB=DC,∠DBF=∠DCN,BF=CN,∴△BDF≌△CDN(SAS),∴∠BDF=∠CDN,∠F=∠CND,DF=DN.∵∠MDN=60°,∴∠BDM+∠CDN=60°,∴∠BDM+∠BDF=60°,即∠FDM=60°=∠MDN.在△DMN和△DMF中,DN=DF,∠MDN=∠MDF,DM=DM,∴△DMN≌△DMF(SAS),∴MN=MF=BM+CN,∠F=∠MND=∠CND,∠FMD=∠DMN,∴△AMN的周長是AM+AN+MN=AM+MB+CN+AN=AB+AC=2邊長.三:對角互補(bǔ)且鄰邊相等的半角模型【條件】如圖,∠B+∠D=180°,∠BAD=2∠EAF,AB=AD,【結(jié)論】①EF=BE+FD;②EA是∠BEF的平分線,F(xiàn)A是∠DFE的平分線.1.(2023·山東·龍口市培基學(xué)校八年級期中)如圖,正方形ABCD的邊長為6,點(diǎn)E,F(xiàn)分別在邊AB,BC上,若F是BC的中點(diǎn),且∠EDF=45°,則DE的長為_____.答案:2分析延長BA到點(diǎn)G,使AG=CF,連接DG,EF,利用SAS證明△ADG≌△CDF,得∠CDF=∠GDA,DG=DF,再證明△GDE≌△FDE(SAS),得GE=EF,設(shè)AE=x,則BE=6x,EF=x+3,再利用勾股定理解決問題.【詳解】解:延長BA到點(diǎn)G,使AG=CF,連接DG,EF,∵AD=CD,∠DAG=∠DCF,∴△ADG≌△CDF(SAS),∴∠CDF=∠GDA,DG=DF,∵∠EDF=45°,∴∠EDG=∠ADE+∠ADG=∠ADE+∠CDF=45°,∵DE=DE,∴△GDE≌△FDE(SAS),∴GE=EF,∵F是BC的中點(diǎn),∴AG=CF=BF=3,設(shè)AE=x,則BE=6﹣x,EF=x+3,由勾股定理得,(6﹣x)2+32=(x+3)2,解得x=2,∴AE=2,∴DE=,故答案為:2.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識,熟練掌握半角模型的處理策略是解題的關(guān)鍵.2.(2023·全國·九年級專題練習(xí))在中,,點(diǎn)在邊上,.若,則的長為__________.答案:分析將CE繞點(diǎn)C順時針旋轉(zhuǎn)90°得到CG,連接GB,GF,可得△ACE≌△BCG,從而得FG2=AE2+BF2,再證明△ECF≌△GCF,從而得EF2=AE2+BF2,進(jìn)而即可求解.【詳解】解:將CE繞點(diǎn)C順時針旋轉(zhuǎn)90°得到CG,連接GB,GF,∵∠BCE+∠ECA=∠BCG+∠BCE=90°∴∠ACE=∠BCG.∵在△ACE與△BCG中,∵,∴△ACE≌△BCG(SAS),∴∠A=∠CBG=45°,AE=BG,∴∠FBG=∠FBC+∠CBG=90°.在Rt△FBG中,∠FBG=90°,∴FG2=BG2+BF2=AE2+BF2.又∵∠ECF=45°,∴∠FCG=∠ECG?∠ECF=45°=∠ECF.∵在△ECF與△GCF中,,∴△ECF≌△GCF(SAS).∴EF=GF,∴EF2=AE2+BF2,∵,∴BF=,故答案是:.【點(diǎn)睛】本題主要考查全等三角形的判定和性質(zhì)以及旋轉(zhuǎn)變換,二次根式的化簡,通過旋轉(zhuǎn)變換,構(gòu)造全等三角形,是解題的關(guān)鍵.1.(2023·浙江·南海實(shí)驗(yàn)學(xué)校旌旗山初中校區(qū)八年級期末)已知:邊長為4的正方形ABCD,∠EAF的兩邊分別與射線CB、DC相交于點(diǎn)E、F,且∠EAF=45°,連接EF.求證:EF=BE+DF.思路分析:(1)如圖1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,∴把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADE',則F、D、E'在一條直線上,∠E'AF=度,……根據(jù)定理,可證:△AEF≌△AE'F.∴EF=BE+DF.類比探究:(2)如圖2,當(dāng)點(diǎn)E在線段CB的延長線上,探究EF、BE、DF之間存在的數(shù)量關(guān)系,并寫出證明過程;拓展應(yīng)用:(3)如圖3,在△ABC中,AB=AC,D、E在BC上,∠BAC=2∠DAE.若S△ABC=14,S△ADE=6,求線段BD、DE、EC圍成的三角形的面積.答案:(1)45(2)DF=BE+EF,證明見解析(3)2分析(1)把繞點(diǎn)逆時針旋轉(zhuǎn)至,則、、在一條直線上,,再證△,得,進(jìn)而得出結(jié)論;(2)將繞點(diǎn)逆時針旋轉(zhuǎn)得到,由旋轉(zhuǎn)的性質(zhì)得,再證△,得,進(jìn)而得出結(jié)論;(3)將繞點(diǎn)逆時針旋轉(zhuǎn)得到,連接,則,得,因此,同(2)得△,則,,得、、圍成的三角形面積,即可求解.(1)解:如圖1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,∴把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至,則F、D、在一條直線上,≌△ABE,∴=BE,∠=∠BAE,=AE,∴∠=∠EAD+∠=∠EAD+∠BAE=∠BAD=90°,則∠=∠﹣∠EAF=45°,∴∠EAF=∠,∴△AEF≌△(SAS),∴,∵,∴EF=BE+DF.故答案為:45;(2)解:DF=BE+EF

理由如下:將△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到△,∴△≌△ABE,∴AE=,BE=,∠=∠BAE,∴∠=∠BAE+∠=∠+∠=∠BAD=90°,則∠=∠﹣∠EAF=45°,∴∠=∠EAF=45°,在△AEF和△中,,∴△AEF≌△(SAS),∴,∵,∴DF=BE+EF;(3)解:將△ABD繞點(diǎn)A逆時針旋轉(zhuǎn)得到△,連接,則△≌△ABD,∴CD'=BD,∴,同(2)得:△ADE≌△(SAS),∴,,∴BD、DE、EC圍成的三角形面積為、、EC圍成的三角形面積.【點(diǎn)睛】本題是四邊形綜合題,考查了全等三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)以及四邊形和三角形面積等知識,本題綜合性強(qiáng),解此題的關(guān)鍵是根據(jù)旋轉(zhuǎn)的啟發(fā)正確作出輔助線得出全等三角形,屬于中考??碱}型.2.(2023·陜西西安·七年級期末)問題背景:如圖1,在四邊形ABCD中,,,E、F分別是BC,CD上的點(diǎn),且∠EAF=60°,探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是,延長FD到點(diǎn)G,使DG=BE,連接AG,先證明,再證明,可得出結(jié)論,他的結(jié)論應(yīng)是______.實(shí)際應(yīng)用:如圖2,在新修的小區(qū)中,有塊四邊形綠化ABCD,四周修有步行小徑,且AB=AD,∠B+∠D=180°,在小徑BC,CD上各修一涼亭E,F(xiàn),在涼亭E與F之間有一池塘,不能直接到達(dá),經(jīng)測量得,BE=10米,DF=15米,試求兩涼亭之間的距離EF.答案:問題背景:EF=BE+FD;實(shí)際應(yīng)用:兩涼亭之間的距離EF為25米分析(1)根據(jù)△ABE≌△ADG可得BE=DG,根據(jù)△AEF≌△AGF得EF=GF,進(jìn)而求得結(jié)果;(2)延長CD至H,使DH=BE,可證得△ADH≌△ABE,進(jìn)而證得△FAH≌△FAE,進(jìn)一步求得EF.【詳解】解:問題背景:∵∠ADC=90°,∠ADC+∠ADG=180°,∴∠ADG=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=60°,∠BAD=120°,∴∠BAE+DAF=120°-60°=60°,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=60°=∠EAF,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF,故答案為:EF=BE+DF;實(shí)際應(yīng)用:如圖2,延長CD至H,使DH=BE,連接AH,∵∠B+∠ADC=180°,∠ADH+∠ADC=180°,∴∠ADH=∠B,在△ADH和△ABE中,,∴△ADH≌△ABE(SAS),∴AE=AH,∠BAE=∠DAH,∵∠EAF=∠BAD,∴∠HAF=∠DAH+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,在△AEF和△AHF中,,∴△AEF≌△AGF(SAS),∴EF=FH,∵FH=DH+DF=BE+DF,∴EF=BE+DF,∵BE=10米,DF=15米,

∴EF=10+15=25(米).【點(diǎn)睛】本題主要考查的是四邊形的綜合題,考查了全等三角形的判定和性質(zhì)等知識,作輔助線構(gòu)造全等三角形并兩次證全等是解題的關(guān)鍵.3.(2023·江蘇·八年級專題練習(xí))問題情境在等邊△ABC的兩邊AB,AC上分別有兩點(diǎn)M,N,點(diǎn)D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.特例探究如圖1,當(dāng)DM=DN時,(1)∠MDB=度;(2)MN與BM,NC之間的數(shù)量關(guān)系為;歸納證明(3)如圖2,當(dāng)DM≠DN時,在NC的延長線上取點(diǎn)E,使CE=BM,連接DE,猜想MN與BM,NC之間的數(shù)量關(guān)系,并加以證明.拓展應(yīng)用(4)△AMN的周長與△ABC的周長的比為.答案:(1)30;(2)MN=BM+NC;(3)MN=BM+NC,證明見解析;(4)分析(1)先證明△MDN是等邊三角形,則MN=DM=DN,再證明Rt△DBM≌Rt△DCN(HL),得∠BDM=∠CDN=30°;(2)由(1)得DM=2BM,可得結(jié)論MN=2BM=BM+NC;歸納證明:先證△DBM≌△DCE(HL),得DM=DE,∠BDM=∠CDE,再證△MDN≌△EDN(SAS),得MN=NE,可得結(jié)論MN=BM+CN;拓展應(yīng)用:(3)首先根據(jù)題意利用SAS證明△DBM≌△DCE,然后證明△MDN≌△EDN,根據(jù)全等三角形對應(yīng)相等通過線段之間的轉(zhuǎn)化即可得到MN=BM+NC;(4)由(3)得到MN=BM+NC,則△AMN的周長=2AB,△ABC的周長=3AB,即可得出結(jié)論.【詳解】特例探究:解:(1)∵DM=DN,∠MDN=60°,∴△MDN是等邊三角形,∴MN=DM=DN,∵∠BDC=120°,BD=DC,∴∠DBC=∠DCB=30°,∵△ABC是等邊三角形,∴∠ABC=∠ACB=60°,∴∠DBM=∠DCN=90°,∵BD=CD,DM=DN,∴Rt△DBM≌Rt△DCN(HL),∴∠MDB=∠NDC=30°,故答案為:30;(2)由(1)得:DM=2BM,DM=MN,Rt△DBM≌Rt△DCN(HL),∴BM=CN,∴DM=MN=2BM=BM+NC,即MN=BM+NC;歸納證明(3)解:猜想:MN=BM+NC,證明如下:∵△ABC是等邊三角形,∴∠ABC=∠ACB=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°.∴∠MBD=∠ECD=90°,又∵BD=CD,BM=CE,∴△DBM≌△DCE(SAS),∴DM=DE,∠MDB=∠EDC,∵∠MDN=60°,∠BDC=120°,∴∠MDB+∠NDC=60°,∴∠EDN=∠NDC+∠EDC=∠MDB+∠NDC=60°,∴∠EDN=∠MDN,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=EN=EC+NC=BM+NC;拓展應(yīng)用(4)解:由(1)(2)得:MN=BM+NC,∴△AMN的周長=AM+MN+AN=AM+BM+NC+AN=AB+AC=2AB,∵△ABC是等邊三角形,∴AB=BC=AC,∴△ABC的周長=3AB,∴△AMN的周長與△ABC的周長的比為=,故答案為:.【點(diǎn)睛】此題考查了等邊三角形的性質(zhì)的,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握等邊三角形的性質(zhì),全等三角形的判定和性質(zhì).1.(1)如圖①,在四邊形中,,,,分別是邊,上的點(diǎn),且.請直接寫出線段,,之間的數(shù)量關(guān)系:__________;(2)如圖②,在四邊形中,,,,分別是邊,上的點(diǎn),且,(1)中的結(jié)論是否仍然成立?請寫出證明過程;(3)在四邊形中,,,,分別是邊,所在直線上的點(diǎn),且.請畫出圖形(除圖②外),并直接寫出線段,,之間的數(shù)量關(guān)系.答案:(1);(2)成立,理由見解析;(3)圖形見解析,分析(1)延長EB到G,使BG=DF,連接AG.證明△AGE和△AEF全等,則EF=GE,則EF=BE+DF,證明△ABE和△AEF中全等,那么AG=AF,∠1=∠2,∠1+∠3=∠2+∠3=∠EAF=∠BAD.從而得出EF=GE;(2)思路和作輔助線的方法同(1);(3)根據(jù)(1)的證法,我們可得出DF=BG,GE=EF,那么EF=GE=BE-BG=BE-DF.【詳解】(1)延長至,使,連接,∵,,∴≌,∴,,∴,∴,在和中,∵,∴≌,∴,∵,∴.故答案為:()()中的結(jié)論仍成立,證明:延長至,使,∵,,∴,在和中,,∴≌,∴,,∵,∴,∴即,在和中,,∴≌,∴,即.(),證明:在上截取使,連接,∵,,∴,∵在和中,,∴≌,∴,,∴,∴,在和中,,∴≌,∴,∵,∴.【點(diǎn)睛】此題主要考查了三角形全等的判定與性質(zhì),通過全等三角形來實(shí)現(xiàn)線段的轉(zhuǎn)換是解題關(guān)鍵,沒有明確的全等三角形時,要通過輔助線來構(gòu)建與已知和所求條件相關(guān)聯(lián)的全等三角形.2.如圖,在等邊三角形ABC中,點(diǎn)E是邊AC上一定點(diǎn),點(diǎn)D是直線BC上一動點(diǎn),以D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論