內蒙古阿榮旗第一中學2023-2024學年高三(最后沖刺)數(shù)學試卷含解析_第1頁
內蒙古阿榮旗第一中學2023-2024學年高三(最后沖刺)數(shù)學試卷含解析_第2頁
內蒙古阿榮旗第一中學2023-2024學年高三(最后沖刺)數(shù)學試卷含解析_第3頁
內蒙古阿榮旗第一中學2023-2024學年高三(最后沖刺)數(shù)學試卷含解析_第4頁
內蒙古阿榮旗第一中學2023-2024學年高三(最后沖刺)數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古阿榮旗第一中學2023-2024學年高三(最后沖刺)數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在復平面內,復數(shù)(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉的角為,則,法國數(shù)學家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導出復數(shù)乘方公式:,已知,則()A. B.4 C. D.162.已知函數(shù)的圖像上有且僅有四個不同的關于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.3.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象.其中假命題的個數(shù)是()A.0 B.1 C.2 D.34.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)5.已知函數(shù),則()A. B.1 C.-1 D.06.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:7.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則8.設,其中a,b是實數(shù),則()A.1 B.2 C. D.9.已知,則的大小關系為A. B. C. D.10.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數(shù)是()A.0 B.1 C.2 D.311.函數(shù)的圖象大致是()A. B.C. D.12.拋物線的準線方程是,則實數(shù)()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則_________.14.已知復數(shù)z1=1﹣2i,z2=a+2i(其中i是虛數(shù)單位,a∈R),若z1?z2是純虛數(shù),則a的值為_____.15.若隨機變量的分布列如表所示,則______,______.-10116.已知點是拋物線的焦點,,是該拋物線上的兩點,若,則線段中點的縱坐標為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現(xiàn)沿折疊,使三點重合,構成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.18.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大??;(2)若的面積為,,求.19.(12分)已知函數(shù).(1)當時,求的單調區(qū)間.(2)設直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.(3)已知分別在,處取得極值,求證:.20.(12分)已知等差數(shù)列的前n項和為,等比數(shù)列的前n項和為,且,,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前n項和.21.(12分)在直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標系,射線的極坐標方程為,射線的極坐標方程為.(Ⅰ)寫出曲線的極坐標方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點,射線與曲線交于兩點,求面積的取值范圍.22.(10分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設數(shù)列的前項和為,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)復數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點睛】本題考查了復數(shù)的新定義題目、同時考查了復數(shù)模的求法,解題的關鍵是理解棣莫弗定理,將復數(shù)化為棣莫弗定理形式,屬于基礎題.2、D【解析】

根據(jù)對稱關系可將問題轉化為與有且僅有四個不同的交點;利用導數(shù)研究的單調性從而得到的圖象;由直線恒過定點,通過數(shù)形結合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結果.【詳解】關于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調遞減;在上單調遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設,,則,解得:設,,則,解得:,則本題正確選項:【點睛】本題考查根據(jù)直線與曲線交點個數(shù)確定參數(shù)范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關鍵是能夠通過對稱性將問題轉化為直線與曲線交點個數(shù)的問題,通過確定直線恒過的定點,采用數(shù)形結合的方式來進行求解.3、C【解析】

結合不等式、三角函數(shù)的性質,對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調性可知,,即,即可得到,即充分性成立;必要性:中,,若,結合余弦函數(shù)的單調性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調性的應用,考查了三角函數(shù)圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.4、C【解析】

先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.5、A【解析】

由函數(shù),求得,進而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、C【解析】

根據(jù)向量的數(shù)量積運算,由向量的關系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運算和命題的充分、必要條件,屬于基礎題.7、D【解析】

利用線面平行和垂直的判定定理和性質定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當,且,則與的位置關系不定,故錯;對于,當時,不能判定,故錯;對于,若,且,則與的位置關系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關系.判斷線面位置位置關系利用好線面平行和垂直的判定定理和性質定理.一般可借助正方體模型,以正方體為主線直觀感知并準確判斷.8、D【解析】

根據(jù)復數(shù)相等,可得,然后根據(jù)復數(shù)模的計算,可得結果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數(shù)模的計算,考驗計算,屬基礎題.9、D【解析】

分析:由題意結合對數(shù)的性質,對數(shù)函數(shù)的單調性和指數(shù)的性質整理計算即可確定a,b,c的大小關系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運用指數(shù)函數(shù)的單調性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調性進行比較.這就必須掌握一些特殊方法.在進行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調性進行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準確.10、C【解析】

建立空間直角坐標系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數(shù).【詳解】設正方體邊長為,建立空間直角坐標系如下圖所示,,.①,,所以,故①正確.②,,不存在實數(shù)使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點睛】本小題主要考查空間線線、線面位置關系的向量判斷方法,考查運算求解能力,屬于中檔題.11、B【解析】

根據(jù)函數(shù)表達式,把分母設為新函數(shù),首先計算函數(shù)定義域,然后求導,根據(jù)導函數(shù)的正負判斷函數(shù)單調性,對應函數(shù)圖像得到答案.【詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.12、C【解析】

根據(jù)準線的方程寫出拋物線的標準方程,再對照系數(shù)求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準線的方程.屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

因為,所以.因為,所以,又,所以,所以..14、-1【解析】

由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數(shù),∴,解得:a=﹣1.故答案為:﹣1.【點睛】本題考查了復數(shù)的概念和運算,屬于基礎題.15、【解析】

首先求得a的值,然后利用均值的性質計算均值,最后求得的值,由方差的性質計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質得.【點睛】本題主要考查分布列的性質,均值的計算公式,方差的計算公式,方差的性質等知識,意在考查學生的轉化能力和計算求解能力.16、2【解析】

運用拋物線的定義將拋物線上的點到焦點距離等于到準線距離,然后求解結果.【詳解】拋物線的標準方程為:,則拋物線的準線方程為,設,,則,所以,則線段中點的縱坐標為.故答案為:【點睛】本題考查了拋物線的定義,由拋物線定義將點到焦點距離轉化為點到準線距離,需要熟練掌握定義,并能靈活運用,本題較為基礎.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)平行,證明見解析;(2).【解析】

(1)由題意及圖形的翻折規(guī)律可知應是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎題.18、(1);(2).【解析】試題分析:(1)利用已知及平面向量數(shù)量積運算可得,利用正弦定理可得,結合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.19、(1)單調遞增區(qū)間為,;單調遞減區(qū)間為;(2),;(3)證明見解析.【解析】

(1)由的正負可確定的單調區(qū)間;(2)利用基本不等式可求得時,取得最小值,由導數(shù)的幾何意義可知,從而求得,求得切點坐標后,可得到切線方程;(3)由極值點的定義可知是的兩個不等正根,由判別式大于零得到的取值范圍,同時得到韋達定理的形式;化簡為,結合的范圍可證得結論.【詳解】(1)由題意得:的定義域為,當時,,,當和時,;當時,,的單調遞增區(qū)間為,;單調遞減區(qū)間為.(2),所以(當且僅當,即時取等號),切線的斜率存在最小值,,解得:,,即切點為,從而切線方程,即:.(3),分別在,處取得極值,,是方程,即的兩個不等正根.則,解得:,且,.,,,即不等式成立.【點睛】本題考查導數(shù)在研究函數(shù)中的應用,涉及到利用導數(shù)求解函數(shù)的單調區(qū)間、導數(shù)幾何意義的應用、利用導數(shù)證明不等式等知識;本題中證明不等式的關鍵是能夠通過極值點的定義將問題轉變?yōu)橐辉畏匠谈姆植紗栴}.20、(1);(2)【解析】

(1)設數(shù)列的公差為d,由可得,,由即可解得,故,由,即可解得,進而求得.(2)由(1)得,,利用分組求和及錯位相減法即可求得結果.【詳解】(1)設數(shù)列的公差為d,數(shù)列的公比為q,由可得,,整理得,即,故,由可得,則,即,故.(2)由(1)得,,,故,所以,數(shù)列的前n項和為,設①,則②,②①得,綜上,數(shù)列的前n項和為.【點睛】本題考查求等差等比的通項公式,考試分組求和及錯位相減法求數(shù)列的和,考查學生的計算能力,難度一般.21、(Ⅰ),曲線是以為圓心,為半徑的圓;(Ⅱ).【解析】

(Ⅰ)由曲線的參數(shù)方程能求出曲線的普通方程,由此能求出曲線的極坐標方程.(Ⅱ)令,,則,利用誘導公式及二倍角公式化簡,再由余弦函數(shù)的性質求出面積的取值范圍;【詳解】解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論