未來能源研究所-中國全國二氧化碳排放交易體系的一般均衡評估_第1頁
未來能源研究所-中國全國二氧化碳排放交易體系的一般均衡評估_第2頁
未來能源研究所-中國全國二氧化碳排放交易體系的一般均衡評估_第3頁
未來能源研究所-中國全國二氧化碳排放交易體系的一般均衡評估_第4頁
未來能源研究所-中國全國二氧化碳排放交易體系的一般均衡評估_第5頁
已閱讀5頁,還剩184頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

China’sNationwideCO2

EmissionsTradingSystem:AGeneralEquilibrium

Assessment

LawrenceH.Goulder,XianlingLong,ChenfeiQu,DaZhang

WorkingPaper24-02

February2024

ResourcesfortheFuturei

AbouttheAuthors

LawrenceH.GoulderistheShuzoNishiharaProfessorinEnvironmentalandResource

EconomicsatStanfordUniversityandDirectoroftheStanfordCenterfor

EnvironmentalandEnergyPolicyAnalysis.HeisalsotheKennedy-GrossmanFellowinHumanBiologyatStanford;aSeniorFellowatStanford'sInstituteforEconomicPolicyResearch;aResearchAssociateattheNationalBureauofEconomicResearch;andaUniversityFellowofResourcesfortheFuture.

XianlingLongobtainedherPhDfromStanfordUniversityin2020.Sheisnowan

assistantprofessorattheNationalSchoolofDevelopment,PekingUniversity.

ChenfeiQuisaffiliatedwiththeInstituteofEnergy,Environment,andEconomyatTsinghuaUniversity.

DaZhangisanassociateprofessorattheInstituteofEnergy,Environmentand

EconomyatTsinghuaUniversity.HeisaresearchassociatefortheJointProgramontheScienceandPolicyofGlobalChangeatMassachusettsInstituteofTechnology,

andanassociateeditorfortheJournalofGlobalEconomicAnalysis.Hismainresearchinterestsincludeenergyandenvironmentaleconomics,energysystemmodeling,

appliedgeneralequilibriummodeling,andorganizationaleconomics.

Acknowledgments

WearegratefulforhelpfulcommentsfromCarolynFischer,GuojunHe,ChristopherR.

Knittel,GilbertE.Metcalf,AlistairRitchie,ThomasRutherford,RobertonWilliams,

XiliangZhang,andparticipantsintheNBEREnvironmentalandEnergyEconomicsProgramMeeting,WorldBankClimateChangeandDevelopmentResearchSeminar,MannheimConferenceonEnergyandEnvironment,andAERE2023Summer

Conference.WethankShuxiaoWangandYishengSunforcontributingdataand

outputsfromtheirair-qualitymodelandShifrahAron-Dine,BingLiuandEricWeinerforexcellentresearchassistance.WealsogratefullyacknowledgefinancialsupportfromtheEnergyFoundationChina,AsiaSocietyPolicyInstitute,NationalNatural

ScienceFoundationofChina,MinistryofEducationofChina,andEnvironmental

DefenseFund.

China’sNationwideCO2EmissionsTradingSystem:AGeneralEquilibriumAssessmentii

AboutRFF

ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutionin

Washington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFis

committedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.

Workingpapersareresearchmaterialscirculatedbytheirauthorsforpurposesof

informationanddiscussion.Theyhavenotnecessarilyundergoneformalpeerreview.Theviewsexpressedherearethoseoftheindividualauthorsandmaydifferfrom

thoseofotherRFFexperts,itsofficers,oritsdirectors.

SharingOurWork

OurworkisavailableforsharingandadaptationunderanAttribution-NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyand

redistributeourmaterialinanymediumorformat;youmustgiveappropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynot

applyadditionalrestrictions.Youmaydosoinanyreasonablemanner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethe

materialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit

/licenses/by-nc-nd/4.0/.

ResourcesfortheFutureiii

Abstract

China’srecentlylaunchedCO2emissionstradingsystem,alreadytheworld’slargest,aimstocontributeimportantlytoglobalreductionsingreenhousegasemissions.Thesystem,atradableperformancestandard(TPS),differsimportantlyfromcapand

trade(C&T),theprincipalapproachusedinothercountries.Weofferadynamic

generalequilibriumassessmentofthisnewventure,employingamodelthatuniquelyconsidersinstitutionalandfiscalfeaturesofChina’seconomythatinfluenceeconomy-widepolicycostsanddistributionalimpacts.

Keyfindingsincludethefollowing.TheTPS’senvironmentalbenefitsexceeditscostsbyafactoroffivewhenonlytheclimatebenefitsareconsideredandbyasignificantlyhigherfactorwhenhealthbenefitsfromimprovedairqualityareincluded.Its

interactionswithChina’sfiscalsystemsubstantiallyaffectitscostsrelativetothoseofC&T.Employingasinglebenchmarkfortheelectricitysectorwouldlowercostsby

overathirdrelativetotheexistingfour-benchmarksystembutincreasethestandarddeviationofpercentageincomelossesacrossprovincesbymorethan60percent.

Introducinganauctionasacomplementarysourceofallowancesupplycanlower

economywidecostsbyatleast30percent.

China’sNationwideCO2EmissionsTradingSystem:AGeneralEquilibriumAssessmentiv

Contents

1.Introduction

1

2.TheTPS

6

2.1.BasicFeatures

6

2.2.ProducerBehaviorandEfficiencyImplications

7

3.TheNumericalModel

10

3.1.MainFeatures

10

3.2.Production

11

3.2.1.PrimaryFactors

11

3.2.2.SectorsandSubsectors

12

3.2.3.State-OwnedEnterprisesandAdministeredPricing

14

3.3.HouseholdBehavior

15

3.4.GovernmentBehavior

15

3.5.ForeignTrade

15

3.6.Equilibrium

16

3.7.Dynamics

16

4.DataandParameters

16

4.1.Data

16

4.2.Parameters

17

5.Scenarios

18

6.Results

20

6.1.AggregateImpacts

20

6.1.1.EmissionsReductions

20

6.1.2.AggregateCosts

22

6.2.SectorImpacts

26

6.2.1.SectorandSubsectorPrices,Outputs,andProfits

26

6.2.2.ImpactsonRenewables

28

6.3.NetBenefits

29

6.4.ImpactsofAuctioning

32

6.5.Trade-offsbetweenEfficiencyandDistributionalImpacts

34

7.Conclusions

35

8.References

37

ResourcesfortheFuturev

AppendixA.ProductionStructureandFunctionalForms

43

A.1.Production

44

A.2.State-OwnedEnterprises

46

A.3.AdministeredElectricityPricing

46

A.4.FactorTypesandSupply

47

A.5.InputsandOutputs

48

A.5.1.OptimalInputIntensities

48

A.5.2.OptimalSupplyofOutput

49

A.6.HouseholdBehavior

50

A.6.1.Consumption

50

A.6.2.Investment

52

A.7.GovernmentBehavior

54

AppendixB.DataandMethodforSubsectorClassificationandDataProcessing55

B.1.SubsectorClassification

55

B.1.1.ElectricitySector

55

B.1.2.Cement

56

B.1.3.Aluminum

57

B.1.4.IronandSteel

59

B.2.DataProcessing

61

B.2.1.DisaggregatingSector-LevelDatatotheSubsectorLevel

61

B.2.2.Input-OutputTableRebalance

62

B.3.DataonImportandExportandEmissionsIntensitybySector

63

AppendixC.ParametersandCalibrationMethods

66

C.1.ProductionParameters

66

C.1.1.SubstitutionElasticityBetweenElectricityandOtherFuels(σe)66

C.1.2.SubstitutionElasticityBetweentheEnergyCompositeandFactor

Composite(σemw)

66

C.1.3.ParametersRelatedtoRenewableEnergySupply

70

C.1.4.ParametersRelatedtoSOEs

72

C.1.5.OtherParameters

77

C.2.ParametersInfluencingIntertemporalAllocationandDynamics79

C.3.ValueofBenchmarks

80

AppendixD.TheSignificanceofPre-ExistingTaxes

82

China’sNationwideCO2EmissionsTradingSystem:AGeneralEquilibriumAssessmentvi

AppendixE.DynamicsofaPotentialTransitionfromaTPStoaC&T83AppendixF.EvaluationofPM2.5ConcentrationsandCorrespondingHealthCobenefits84

AppendixG.EstimationoftheGeographicalCostDistribution88AppendixH.SensitivityAnalysis91AppendixReferences97

101

ResourcesfortheFuture

1

1.Introduction

Chinahaslaunchedanambitiousnationwideprogramtoreduceemissionsofcarbondioxide(CO2)andaddressclimatechange.Introducedin2021,theprogramhas

alreadybecometheworld’slargestemissionstradingsystem.Itisexpectedtomakeamajorcontributiontohaltingaggregateemissionsgrowthby2030andachievingnet-zeroCO2emissionsbefore2060.

Thenewsystemisatradableperformancestandard(TPS),asysteminwhich

compliancedependsonacoveredfacility’semissionsintensity.Ineverycomplianceperiod,thegovernmentassignseachcoveredfacilityemissionsallowancesbasedonitsoutputandagovernment-assigned“benchmark”ratioofemissionsperunitof

output.Ingeneral,thebenchmarksaresetbelowtheaverageinitialemissions

intensitiesacrossthecoveredfacilities,whichimpliesthatChina’sTPSwillrequireanoverallreductionintheemissions-outputratio.

ATPSisanexampleofanoutput-orientedemissionsintensitystandard,asitimposesaceilingontheratioofemissionstooutput.

1

Itcanbecontrastedwithaninput-

orientedrate-basedstandard,whichimposesafloorontheratioof“clean”(low-

polluting)to“dirty”(high-polluting)inputstoproduction.

2

ATPSincludesprovisionsfortradingemissionsallowances.Tradesalterthedistributionofabatementeffortsacrossfacilitiesandbringaboutmoreabatementbyfacilitiesthatcanachieve

emissionsreductionsatthelowestcost.Inthisrespect,aTPSsharesakeyfeatureofcapandtrade(C&T),theprincipaltypeofemissionstradingprogramusedinothercountries.

1Fischer(2001)offeredafoundationaltheoreticalstudyoftheefficiencypropertiesofaTPS.SubsequentstudiesexaminingpotentialoractualUSrate-basedclimatepoliciesinclude

Fischeretal.(2017),Bushnelletal.(2017),Zhangetal.(2018),andChenetal.(2018).RecentstudiesofChina’sTPSincludePizerandZhang(2018),Goulderetal.(2022),Wangetal.

(2022),andKarplusandZhang(2017).

2Examplesofinput-orientedintensitystandardsincludelow-carbonfuelstandards,whichhavebeenintroducedinseveralUSstates,andrenewableportfoliostandards,whichestablisha

floorontheratioofrenewables-generatedtofossil-generatedelectricitypurchasedbyelectricutilities.Input-orientedintensitystandardsimplicitlysubsidizethecleanerinputsandtaxthedirtierones.Studiesoflow-carbonfuelstandardsincludeHollandetal.(2009,2015),andBentoetal.(2020).AnalysesofrenewableportfoliostandardsincludeFischer(2010),Fischerand

Preonas(2010),andBentoetal.(2018).Aclosecousintoarenewableportfoliostandardisa

cleanelectricitystandard,whichimposesafloorontheratioof“clean”electricitytofossil-

generatedelectricityusedbyutilities,where“clean”mayalsoincludeenergyfromnuclear

powerplantsandrenewablesources.Goulderetal.(2016)andBorensteinandKellogg(2022)examinesuchstandards.FullertonandMetcalf(2001),FischerandNewell(2008),GoulderandParry(2008),Parryetal.(2016),Fischeretal.(2017),Metcalf(2019),andDimanchevand

Knittel(2023)surveytheefficiencyattractionsandlimitationsofawiderangeofclimatepolicyinstruments,includingintensitystandardsandcapandtrade.

China’sNationwideCO2EmissionsTradingSystem:AGeneralEquilibriumAssessment

2

However,aTPSdiffersfromC&Tinimportantways.UnderC&T,acoveredfacility’s

complianceisbasedontheabsolutequantityofitsemissionsoverthecompliance

period.Thisquantitymustnotexceedthefacility’sallocatedemissionsallowances,anamountthatusuallyisexogenousfromthecoveredfacility’sperspective.

3

Incontrast,undertheTPS’sintensity-basedapproach,thenumberofallowancesgrantedtoa

coveredfacilityisendogenous:itistheproductofthefacility’sassignedbenchmarkanditschosenlevelofoutput.Thisintensity-basedallocationmethodoffersthe

coveredfacilityjustenoughallowancestojustifytheemissionsitwouldgenerateifitsactualemissions-outputratiomatcheditsbenchmark.Theendogeneityofthe

allowanceallocationisanimportantdifferencefromC&T—adifferencewithimportantimplicationsforthecostsofachievingthenation’soverallemission-reductiontargetsandthedistributionalimpacts.

Thispaperpresentsthestructureandresultsfromamultisector,multiperiodgeneralequilibriummodeldesignedtoevaluateChina’sneweffort.Weapplythemodelto

assesstheTPS’simpactonoutputlevels,productioncosts,prices,andCO2emissionsoverthe2020–2035interval.

Themodelhasseveraldistinguishingfeaturesthatenableittoidentifyeconomic

forcesandoutcomesthathavereceivedlittlepriorrecognition.First,itpaysclose

attentiontothestructureandcomplianceobligationsofChina’sTPS.Muchofthe

earlierliteratureonitdisregardssignificantdifferencesbetweentheTPSandC&T.

AlthoughsomerelativelyrecentstudiesofChina’snationwideclimatepolicyefforts

recognizethesedifferences,

4

thispapermakesafurthercontributionbyconsideringhowinstitutionalandregulatoryfeaturesofChina’seconomyinfluenceTPSandC&Toutcomes.Thesefeaturesincludetheadministeredpricingofsomeelectricityoutput,supportingpoliciesforrenewableelectricity,pre-existingtaxesandsubsidies,andthepreferentialtreatmentofstate-ownedenterprises(SOEs).ThepapershowsthatthesefeaturessignificantlyinfluencetheTPS’scostsandtheirdifferencescomparedto

C&T.

Second,themodelemploysageneralequilibriumframework,whichenablesitto

addressinteractionsamongsectorscoveredbytheTPSandbetweencoveredand

uncoveredsectors.EarlierstudiesexaminingChina’sTPShavetendedtoemploy

partialequilibriummodels.

5

WeareawareofonlyonegeneralequilibriummodelthatstudiedChina’sTPS:Yuetal.(2022).

6

Ourmodeldiffersfromthatoneinseveralways.

3AfewC&Tsystemsincludeprovisionsforoutput-basedallocation,whichconnectsafacility’sallowanceallocationtoitschosenlevelofoutput;thus,theallocationisendogenousinthis

case.

4See,forexample,GengandFan(2021),Goulderetal.(2022),IEAandTsinghuaUniversity(2021),MaandQian(2022),Wangetal.(2022),Yuetal.(2022),andZhangetal.(2023).

5ThepartialequilibriumstudiesincludeGengandFan(2021),Goulderetal.(2022),IEA(2022),MaandQian(2022),Wangetal.(2022),andZhangetal.(2023).

6LinandJia(2019),Jinetal.(2020),andWuetal.(2022)assessthegeneralequilibrium

impactsofanationwideemissionstradingsysteminChina.However,thesystemsconsideredinthesestudiesareC&TratherthanaTPS.

ResourcesfortheFuture

3

Inadditiontoincorporatingtheinstitutionalandregulatoryfeaturesjustdescribed,itemploysplant-leveldata,enablingittoaccountforheterogeneousproduction

technologieswithinsectorsandthewithin-andacross-sectorvariationofTPS

benchmarks—consistentwiththeactualTPSdesign.Inaddition,whileYuetal.focusonlyonthefirstTPSphase,whenitcoversonlytheelectricitysector,ouranalysisalsoconsidersthelaterphases,duringwhichcoverageextendstoseveralothersectors.

Third,themodelisintertemporal,capturingchangesinpolicystringencyandimpactsovertime.ThefewTPSstudiesthatincorporateintertemporaldynamicstendtofocusonindividualsectors.

7

Ourmodel’sdynamicgeneralequilibriumframeworkcanassesshowtheabsoluteandrelativecostsoftheTPSandC&Tchangeovertimewiththe

changesinsectorcoverageandpolicystringency.

Finally,themodelhasconsiderableflexibilityintermsoftherangeoffutureTPS

policydesignsitcanexamine,dimensionsthathavenotbeencomprehensively

analyzedintheliterature.Theseincludealternativespecificationsforthevariationandaveragestringencyofbenchmarksandtheintroductionofallowanceauctioning.

AlthoughChinahasalreadyintroducedthefirstphaseoftheTPS,theMinistryof

EnvironmentandEcology(MEE)—responsiblefordesigningandimplementingthe

program—iscontinuingtomakeimportantdecisionsaboutthedesignoflaterphases.Themodelcanincorporatethealternativepotentialpolicydesigns,whichhave

differingimplicationsforaggregatecosts,theirdistributionacrosssectorsand

regions,andthescaleofemissionsreductions.TheflexibilitymakesthismodelpoisedtoofferimportantpolicyrecommendationsforChina’scontinuallyevolvingcarbon

emissionstradingsystem.

TheresultsfromouranalysisyielduniqueandsignificantinsightsintothepotentialimpactsofChina’snewnationwideclimatepolicyeffort.First,wefindthattheTPS’senvironmentalbenefitsarelikelytobewellaboveitseconomiccost.Ourcentral

estimateisthattheclimatebenefitsfromtheTPS’semissionsreductionoverthe

2020-2035intervalwouldexceeditscostbyafactorofmorethanfive.Includingthehealthbenefitsfromimprovedlocalairqualityincreasestheestimatedbenefit-costratioto26.

8

TheseratiosapplywhenweemploytheBidenadministration’sestimatesofthe“socialcostofcarbon”(SCC)—thediscountedclimatebenefitfroman

7See,forexample,Becker(2023/)andYuetal.(2022).

8TheclimatebenefitsfromCO2reductionsare6–43trillionRMBunderaplausiblerangeof

valuesfortheSCC,modelparameters,andpolicystringencyoverthe2020–2035interval.

Whenhealthco-benefitsareconsidered,theTPS’stotalenvironmentalbenefitsare19–122

trillionRMB,with53trillionasthecentralestimate.Thiscompareswitheconomiccostsof1–3trillionRMBunderthesamerangeofmodelparametersandpolicystringency(seeSection6.3).

China’sNationwideCO2EmissionsTradingSystem:AGeneralEquilibriumAssessment

4

incrementalreductioninCO2emissions.RecentstudiesobtainconsiderablylargerestimatesoftheSCC.Employingtheseestimatesyieldsconsiderablyhigherbenefit-costratios.

9

Second,theplannedstringencyofChina’sTPSislessthantheefficiency-maximizinglevel.Efficiencymaximizationrequiresthatmarginalabatementcostequalmarginalenvironmentalbenefit.Ourresultsindicatethatoverthe2020-2035interval,the

averagediscountedmarginalcostofabatement

10

iswellbelowthecentralestimatesbytheBidenadministrationofthemarginalbenefitsfromemissionsabatementduringthisinterval,asexpressedbytheSCC.WiththeBidenadministration’sSCCestimates,efficiencymaximizationwouldcallforbenchmarksthatare9percenttighterthanthecurrentandplannedbenchmarksundertheTPS.Usingtheefficiency-maximizing

benchmarkswouldleadtoemissionsreductionsovertheintervalthataretwiceaslargeaswhatseemslikelytoresultfromthecurrentandprojectedbenchmarksoverthisinterval.UsingthehigherSCCestimatesfromrecentstudieswouldcallforstillgreaterstringencyandassociatedemissionsreductions.

Third,therelativecostsoftheTPSandanequivalentC&Tsystemchange

significantlyovertime.Intheearlyyears,theTPS’scostsareonlyslightlyhigherthanthoseofanequivalentlystringentC&Tsystem,butitscostdisadvantagebecomes

moresignificantovertime.Weidentifythreefactorsthatexplainthispattern,twoof

whichhavenotbeenrecognized.ThefactorrecognizedintheliteraturealludestotheTPS’smethodforallowanceallocation.TheTPSimplicitlysubsidizesintendedoutput,ascoveredfacilitiesreceivefreeallowancesforeachadditionalunitofproduction.Thesubsidycausescoveredfirmstorelytoolittle(fromanefficiencypointofview)on

output-reductiontoachievecompliance,asreducingoutputimpliesareduced

allowanceallocation.ThisfactorhandicapstheTPSrelativetoC&T,whichincludesnosuchsubsidy.Thispaperrevealstwoadditionalandsignificantdeterminantsofthe

TPS’sabsoluteandrelativecosts.First,theTPS’sexcesscostoverC&Tincreaseswiththestringencyoftheemissions-reductiontarget.Increasedstringencyleadstohigherallowanceprices,which,asshown,givesgreaterimportancetotheTPS’simplicit

subsidy.ThisexplainstheobservedgrowinggapovertimeintheTPS’saggregate

abatementcostrelativetotheaggregatecostunderC&Tasstringencyincreasesandallowancepricesrise.Second,therelativecostsalsodependontheextentofpre-

9Rennertetal.(2022)estimatetheSCC(evaluatedin2020)tobe1,277RMB(185USdollars)pertonofCO2;CarletonandGreenstone(2022)suggestusing863RMB(125USdollars)pertonofCO2.TheserecentestimationsaremuchhigherthantheBidenadministration’scentralestimateof353RMB(51USdollars)perton.

10WeobtaintheeconomywidemarginalcostbyevaluatingthecumulativeeconomywidecostfromanincrementaltighteningofbenchmarksrelativetotheirvaluesundertheTPSinthe

centralcase.Specifically,theaveragemarginalcostpertonisthepresentvalueofcumulativechangeinGDPover2020–2035dividedbytheassociatedcumulativechangeinemissions

relativetothebaseline,usinganannualdiscountrateof5percent.Theeconomywidemarginalcostofabatementisdifferentfromt

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論