版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
China’sNationwideCO2
EmissionsTradingSystem:AGeneralEquilibrium
Assessment
LawrenceH.Goulder,XianlingLong,ChenfeiQu,DaZhang
WorkingPaper24-02
February2024
ResourcesfortheFuturei
AbouttheAuthors
LawrenceH.GoulderistheShuzoNishiharaProfessorinEnvironmentalandResource
EconomicsatStanfordUniversityandDirectoroftheStanfordCenterfor
EnvironmentalandEnergyPolicyAnalysis.HeisalsotheKennedy-GrossmanFellowinHumanBiologyatStanford;aSeniorFellowatStanford'sInstituteforEconomicPolicyResearch;aResearchAssociateattheNationalBureauofEconomicResearch;andaUniversityFellowofResourcesfortheFuture.
XianlingLongobtainedherPhDfromStanfordUniversityin2020.Sheisnowan
assistantprofessorattheNationalSchoolofDevelopment,PekingUniversity.
ChenfeiQuisaffiliatedwiththeInstituteofEnergy,Environment,andEconomyatTsinghuaUniversity.
DaZhangisanassociateprofessorattheInstituteofEnergy,Environmentand
EconomyatTsinghuaUniversity.HeisaresearchassociatefortheJointProgramontheScienceandPolicyofGlobalChangeatMassachusettsInstituteofTechnology,
andanassociateeditorfortheJournalofGlobalEconomicAnalysis.Hismainresearchinterestsincludeenergyandenvironmentaleconomics,energysystemmodeling,
appliedgeneralequilibriummodeling,andorganizationaleconomics.
Acknowledgments
WearegratefulforhelpfulcommentsfromCarolynFischer,GuojunHe,ChristopherR.
Knittel,GilbertE.Metcalf,AlistairRitchie,ThomasRutherford,RobertonWilliams,
XiliangZhang,andparticipantsintheNBEREnvironmentalandEnergyEconomicsProgramMeeting,WorldBankClimateChangeandDevelopmentResearchSeminar,MannheimConferenceonEnergyandEnvironment,andAERE2023Summer
Conference.WethankShuxiaoWangandYishengSunforcontributingdataand
outputsfromtheirair-qualitymodelandShifrahAron-Dine,BingLiuandEricWeinerforexcellentresearchassistance.WealsogratefullyacknowledgefinancialsupportfromtheEnergyFoundationChina,AsiaSocietyPolicyInstitute,NationalNatural
ScienceFoundationofChina,MinistryofEducationofChina,andEnvironmental
DefenseFund.
China’sNationwideCO2EmissionsTradingSystem:AGeneralEquilibriumAssessmentii
AboutRFF
ResourcesfortheFuture(RFF)isanindependent,nonprofitresearchinstitutionin
Washington,DC.Itsmissionistoimproveenvironmental,energy,andnaturalresourcedecisionsthroughimpartialeconomicresearchandpolicyengagement.RFFis
committedtobeingthemostwidelytrustedsourceofresearchinsightsandpolicysolutionsleadingtoahealthyenvironmentandathrivingeconomy.
Workingpapersareresearchmaterialscirculatedbytheirauthorsforpurposesof
informationanddiscussion.Theyhavenotnecessarilyundergoneformalpeerreview.Theviewsexpressedherearethoseoftheindividualauthorsandmaydifferfrom
thoseofotherRFFexperts,itsofficers,oritsdirectors.
SharingOurWork
OurworkisavailableforsharingandadaptationunderanAttribution-NonCommercial-NoDerivatives4.0International(CCBY-NC-ND4.0)license.Youcancopyand
redistributeourmaterialinanymediumorformat;youmustgiveappropriatecredit,providealinktothelicense,andindicateifchangesweremade,andyoumaynot
applyadditionalrestrictions.Youmaydosoinanyreasonablemanner,butnotinanywaythatsuggeststhelicensorendorsesyouoryouruse.Youmaynotusethe
materialforcommercialpurposes.Ifyouremix,transform,orbuilduponthematerial,youmaynotdistributethemodifiedmaterial.Formoreinformation,visit
/licenses/by-nc-nd/4.0/.
ResourcesfortheFutureiii
Abstract
China’srecentlylaunchedCO2emissionstradingsystem,alreadytheworld’slargest,aimstocontributeimportantlytoglobalreductionsingreenhousegasemissions.Thesystem,atradableperformancestandard(TPS),differsimportantlyfromcapand
trade(C&T),theprincipalapproachusedinothercountries.Weofferadynamic
generalequilibriumassessmentofthisnewventure,employingamodelthatuniquelyconsidersinstitutionalandfiscalfeaturesofChina’seconomythatinfluenceeconomy-widepolicycostsanddistributionalimpacts.
Keyfindingsincludethefollowing.TheTPS’senvironmentalbenefitsexceeditscostsbyafactoroffivewhenonlytheclimatebenefitsareconsideredandbyasignificantlyhigherfactorwhenhealthbenefitsfromimprovedairqualityareincluded.Its
interactionswithChina’sfiscalsystemsubstantiallyaffectitscostsrelativetothoseofC&T.Employingasinglebenchmarkfortheelectricitysectorwouldlowercostsby
overathirdrelativetotheexistingfour-benchmarksystembutincreasethestandarddeviationofpercentageincomelossesacrossprovincesbymorethan60percent.
Introducinganauctionasacomplementarysourceofallowancesupplycanlower
economywidecostsbyatleast30percent.
China’sNationwideCO2EmissionsTradingSystem:AGeneralEquilibriumAssessmentiv
Contents
1.Introduction
1
2.TheTPS
6
2.1.BasicFeatures
6
2.2.ProducerBehaviorandEfficiencyImplications
7
3.TheNumericalModel
10
3.1.MainFeatures
10
3.2.Production
11
3.2.1.PrimaryFactors
11
3.2.2.SectorsandSubsectors
12
3.2.3.State-OwnedEnterprisesandAdministeredPricing
14
3.3.HouseholdBehavior
15
3.4.GovernmentBehavior
15
3.5.ForeignTrade
15
3.6.Equilibrium
16
3.7.Dynamics
16
4.DataandParameters
16
4.1.Data
16
4.2.Parameters
17
5.Scenarios
18
6.Results
20
6.1.AggregateImpacts
20
6.1.1.EmissionsReductions
20
6.1.2.AggregateCosts
22
6.2.SectorImpacts
26
6.2.1.SectorandSubsectorPrices,Outputs,andProfits
26
6.2.2.ImpactsonRenewables
28
6.3.NetBenefits
29
6.4.ImpactsofAuctioning
32
6.5.Trade-offsbetweenEfficiencyandDistributionalImpacts
34
7.Conclusions
35
8.References
37
ResourcesfortheFuturev
AppendixA.ProductionStructureandFunctionalForms
43
A.1.Production
44
A.2.State-OwnedEnterprises
46
A.3.AdministeredElectricityPricing
46
A.4.FactorTypesandSupply
47
A.5.InputsandOutputs
48
A.5.1.OptimalInputIntensities
48
A.5.2.OptimalSupplyofOutput
49
A.6.HouseholdBehavior
50
A.6.1.Consumption
50
A.6.2.Investment
52
A.7.GovernmentBehavior
54
AppendixB.DataandMethodforSubsectorClassificationandDataProcessing55
B.1.SubsectorClassification
55
B.1.1.ElectricitySector
55
B.1.2.Cement
56
B.1.3.Aluminum
57
B.1.4.IronandSteel
59
B.2.DataProcessing
61
B.2.1.DisaggregatingSector-LevelDatatotheSubsectorLevel
61
B.2.2.Input-OutputTableRebalance
62
B.3.DataonImportandExportandEmissionsIntensitybySector
63
AppendixC.ParametersandCalibrationMethods
66
C.1.ProductionParameters
66
C.1.1.SubstitutionElasticityBetweenElectricityandOtherFuels(σe)66
C.1.2.SubstitutionElasticityBetweentheEnergyCompositeandFactor
Composite(σemw)
66
C.1.3.ParametersRelatedtoRenewableEnergySupply
70
C.1.4.ParametersRelatedtoSOEs
72
C.1.5.OtherParameters
77
C.2.ParametersInfluencingIntertemporalAllocationandDynamics79
C.3.ValueofBenchmarks
80
AppendixD.TheSignificanceofPre-ExistingTaxes
82
China’sNationwideCO2EmissionsTradingSystem:AGeneralEquilibriumAssessmentvi
AppendixE.DynamicsofaPotentialTransitionfromaTPStoaC&T83AppendixF.EvaluationofPM2.5ConcentrationsandCorrespondingHealthCobenefits84
AppendixG.EstimationoftheGeographicalCostDistribution88AppendixH.SensitivityAnalysis91AppendixReferences97
101
ResourcesfortheFuture
1
1.Introduction
Chinahaslaunchedanambitiousnationwideprogramtoreduceemissionsofcarbondioxide(CO2)andaddressclimatechange.Introducedin2021,theprogramhas
alreadybecometheworld’slargestemissionstradingsystem.Itisexpectedtomakeamajorcontributiontohaltingaggregateemissionsgrowthby2030andachievingnet-zeroCO2emissionsbefore2060.
Thenewsystemisatradableperformancestandard(TPS),asysteminwhich
compliancedependsonacoveredfacility’semissionsintensity.Ineverycomplianceperiod,thegovernmentassignseachcoveredfacilityemissionsallowancesbasedonitsoutputandagovernment-assigned“benchmark”ratioofemissionsperunitof
output.Ingeneral,thebenchmarksaresetbelowtheaverageinitialemissions
intensitiesacrossthecoveredfacilities,whichimpliesthatChina’sTPSwillrequireanoverallreductionintheemissions-outputratio.
ATPSisanexampleofanoutput-orientedemissionsintensitystandard,asitimposesaceilingontheratioofemissionstooutput.
1
Itcanbecontrastedwithaninput-
orientedrate-basedstandard,whichimposesafloorontheratioof“clean”(low-
polluting)to“dirty”(high-polluting)inputstoproduction.
2
ATPSincludesprovisionsfortradingemissionsallowances.Tradesalterthedistributionofabatementeffortsacrossfacilitiesandbringaboutmoreabatementbyfacilitiesthatcanachieve
emissionsreductionsatthelowestcost.Inthisrespect,aTPSsharesakeyfeatureofcapandtrade(C&T),theprincipaltypeofemissionstradingprogramusedinothercountries.
1Fischer(2001)offeredafoundationaltheoreticalstudyoftheefficiencypropertiesofaTPS.SubsequentstudiesexaminingpotentialoractualUSrate-basedclimatepoliciesinclude
Fischeretal.(2017),Bushnelletal.(2017),Zhangetal.(2018),andChenetal.(2018).RecentstudiesofChina’sTPSincludePizerandZhang(2018),Goulderetal.(2022),Wangetal.
(2022),andKarplusandZhang(2017).
2Examplesofinput-orientedintensitystandardsincludelow-carbonfuelstandards,whichhavebeenintroducedinseveralUSstates,andrenewableportfoliostandards,whichestablisha
floorontheratioofrenewables-generatedtofossil-generatedelectricitypurchasedbyelectricutilities.Input-orientedintensitystandardsimplicitlysubsidizethecleanerinputsandtaxthedirtierones.Studiesoflow-carbonfuelstandardsincludeHollandetal.(2009,2015),andBentoetal.(2020).AnalysesofrenewableportfoliostandardsincludeFischer(2010),Fischerand
Preonas(2010),andBentoetal.(2018).Aclosecousintoarenewableportfoliostandardisa
cleanelectricitystandard,whichimposesafloorontheratioof“clean”electricitytofossil-
generatedelectricityusedbyutilities,where“clean”mayalsoincludeenergyfromnuclear
powerplantsandrenewablesources.Goulderetal.(2016)andBorensteinandKellogg(2022)examinesuchstandards.FullertonandMetcalf(2001),FischerandNewell(2008),GoulderandParry(2008),Parryetal.(2016),Fischeretal.(2017),Metcalf(2019),andDimanchevand
Knittel(2023)surveytheefficiencyattractionsandlimitationsofawiderangeofclimatepolicyinstruments,includingintensitystandardsandcapandtrade.
China’sNationwideCO2EmissionsTradingSystem:AGeneralEquilibriumAssessment
2
However,aTPSdiffersfromC&Tinimportantways.UnderC&T,acoveredfacility’s
complianceisbasedontheabsolutequantityofitsemissionsoverthecompliance
period.Thisquantitymustnotexceedthefacility’sallocatedemissionsallowances,anamountthatusuallyisexogenousfromthecoveredfacility’sperspective.
3
Incontrast,undertheTPS’sintensity-basedapproach,thenumberofallowancesgrantedtoa
coveredfacilityisendogenous:itistheproductofthefacility’sassignedbenchmarkanditschosenlevelofoutput.Thisintensity-basedallocationmethodoffersthe
coveredfacilityjustenoughallowancestojustifytheemissionsitwouldgenerateifitsactualemissions-outputratiomatcheditsbenchmark.Theendogeneityofthe
allowanceallocationisanimportantdifferencefromC&T—adifferencewithimportantimplicationsforthecostsofachievingthenation’soverallemission-reductiontargetsandthedistributionalimpacts.
Thispaperpresentsthestructureandresultsfromamultisector,multiperiodgeneralequilibriummodeldesignedtoevaluateChina’sneweffort.Weapplythemodelto
assesstheTPS’simpactonoutputlevels,productioncosts,prices,andCO2emissionsoverthe2020–2035interval.
Themodelhasseveraldistinguishingfeaturesthatenableittoidentifyeconomic
forcesandoutcomesthathavereceivedlittlepriorrecognition.First,itpaysclose
attentiontothestructureandcomplianceobligationsofChina’sTPS.Muchofthe
earlierliteratureonitdisregardssignificantdifferencesbetweentheTPSandC&T.
AlthoughsomerelativelyrecentstudiesofChina’snationwideclimatepolicyefforts
recognizethesedifferences,
4
thispapermakesafurthercontributionbyconsideringhowinstitutionalandregulatoryfeaturesofChina’seconomyinfluenceTPSandC&Toutcomes.Thesefeaturesincludetheadministeredpricingofsomeelectricityoutput,supportingpoliciesforrenewableelectricity,pre-existingtaxesandsubsidies,andthepreferentialtreatmentofstate-ownedenterprises(SOEs).ThepapershowsthatthesefeaturessignificantlyinfluencetheTPS’scostsandtheirdifferencescomparedto
C&T.
Second,themodelemploysageneralequilibriumframework,whichenablesitto
addressinteractionsamongsectorscoveredbytheTPSandbetweencoveredand
uncoveredsectors.EarlierstudiesexaminingChina’sTPShavetendedtoemploy
partialequilibriummodels.
5
WeareawareofonlyonegeneralequilibriummodelthatstudiedChina’sTPS:Yuetal.(2022).
6
Ourmodeldiffersfromthatoneinseveralways.
3AfewC&Tsystemsincludeprovisionsforoutput-basedallocation,whichconnectsafacility’sallowanceallocationtoitschosenlevelofoutput;thus,theallocationisendogenousinthis
case.
4See,forexample,GengandFan(2021),Goulderetal.(2022),IEAandTsinghuaUniversity(2021),MaandQian(2022),Wangetal.(2022),Yuetal.(2022),andZhangetal.(2023).
5ThepartialequilibriumstudiesincludeGengandFan(2021),Goulderetal.(2022),IEA(2022),MaandQian(2022),Wangetal.(2022),andZhangetal.(2023).
6LinandJia(2019),Jinetal.(2020),andWuetal.(2022)assessthegeneralequilibrium
impactsofanationwideemissionstradingsysteminChina.However,thesystemsconsideredinthesestudiesareC&TratherthanaTPS.
ResourcesfortheFuture
3
Inadditiontoincorporatingtheinstitutionalandregulatoryfeaturesjustdescribed,itemploysplant-leveldata,enablingittoaccountforheterogeneousproduction
technologieswithinsectorsandthewithin-andacross-sectorvariationofTPS
benchmarks—consistentwiththeactualTPSdesign.Inaddition,whileYuetal.focusonlyonthefirstTPSphase,whenitcoversonlytheelectricitysector,ouranalysisalsoconsidersthelaterphases,duringwhichcoverageextendstoseveralothersectors.
Third,themodelisintertemporal,capturingchangesinpolicystringencyandimpactsovertime.ThefewTPSstudiesthatincorporateintertemporaldynamicstendtofocusonindividualsectors.
7
Ourmodel’sdynamicgeneralequilibriumframeworkcanassesshowtheabsoluteandrelativecostsoftheTPSandC&Tchangeovertimewiththe
changesinsectorcoverageandpolicystringency.
Finally,themodelhasconsiderableflexibilityintermsoftherangeoffutureTPS
policydesignsitcanexamine,dimensionsthathavenotbeencomprehensively
analyzedintheliterature.Theseincludealternativespecificationsforthevariationandaveragestringencyofbenchmarksandtheintroductionofallowanceauctioning.
AlthoughChinahasalreadyintroducedthefirstphaseoftheTPS,theMinistryof
EnvironmentandEcology(MEE)—responsiblefordesigningandimplementingthe
program—iscontinuingtomakeimportantdecisionsaboutthedesignoflaterphases.Themodelcanincorporatethealternativepotentialpolicydesigns,whichhave
differingimplicationsforaggregatecosts,theirdistributionacrosssectorsand
regions,andthescaleofemissionsreductions.TheflexibilitymakesthismodelpoisedtoofferimportantpolicyrecommendationsforChina’scontinuallyevolvingcarbon
emissionstradingsystem.
TheresultsfromouranalysisyielduniqueandsignificantinsightsintothepotentialimpactsofChina’snewnationwideclimatepolicyeffort.First,wefindthattheTPS’senvironmentalbenefitsarelikelytobewellaboveitseconomiccost.Ourcentral
estimateisthattheclimatebenefitsfromtheTPS’semissionsreductionoverthe
2020-2035intervalwouldexceeditscostbyafactorofmorethanfive.Includingthehealthbenefitsfromimprovedlocalairqualityincreasestheestimatedbenefit-costratioto26.
8
TheseratiosapplywhenweemploytheBidenadministration’sestimatesofthe“socialcostofcarbon”(SCC)—thediscountedclimatebenefitfroman
7See,forexample,Becker(2023/)andYuetal.(2022).
8TheclimatebenefitsfromCO2reductionsare6–43trillionRMBunderaplausiblerangeof
valuesfortheSCC,modelparameters,andpolicystringencyoverthe2020–2035interval.
Whenhealthco-benefitsareconsidered,theTPS’stotalenvironmentalbenefitsare19–122
trillionRMB,with53trillionasthecentralestimate.Thiscompareswitheconomiccostsof1–3trillionRMBunderthesamerangeofmodelparametersandpolicystringency(seeSection6.3).
China’sNationwideCO2EmissionsTradingSystem:AGeneralEquilibriumAssessment
4
incrementalreductioninCO2emissions.RecentstudiesobtainconsiderablylargerestimatesoftheSCC.Employingtheseestimatesyieldsconsiderablyhigherbenefit-costratios.
9
Second,theplannedstringencyofChina’sTPSislessthantheefficiency-maximizinglevel.Efficiencymaximizationrequiresthatmarginalabatementcostequalmarginalenvironmentalbenefit.Ourresultsindicatethatoverthe2020-2035interval,the
averagediscountedmarginalcostofabatement
10
iswellbelowthecentralestimatesbytheBidenadministrationofthemarginalbenefitsfromemissionsabatementduringthisinterval,asexpressedbytheSCC.WiththeBidenadministration’sSCCestimates,efficiencymaximizationwouldcallforbenchmarksthatare9percenttighterthanthecurrentandplannedbenchmarksundertheTPS.Usingtheefficiency-maximizing
benchmarkswouldleadtoemissionsreductionsovertheintervalthataretwiceaslargeaswhatseemslikelytoresultfromthecurrentandprojectedbenchmarksoverthisinterval.UsingthehigherSCCestimatesfromrecentstudieswouldcallforstillgreaterstringencyandassociatedemissionsreductions.
Third,therelativecostsoftheTPSandanequivalentC&Tsystemchange
significantlyovertime.Intheearlyyears,theTPS’scostsareonlyslightlyhigherthanthoseofanequivalentlystringentC&Tsystem,butitscostdisadvantagebecomes
moresignificantovertime.Weidentifythreefactorsthatexplainthispattern,twoof
whichhavenotbeenrecognized.ThefactorrecognizedintheliteraturealludestotheTPS’smethodforallowanceallocation.TheTPSimplicitlysubsidizesintendedoutput,ascoveredfacilitiesreceivefreeallowancesforeachadditionalunitofproduction.Thesubsidycausescoveredfirmstorelytoolittle(fromanefficiencypointofview)on
output-reductiontoachievecompliance,asreducingoutputimpliesareduced
allowanceallocation.ThisfactorhandicapstheTPSrelativetoC&T,whichincludesnosuchsubsidy.Thispaperrevealstwoadditionalandsignificantdeterminantsofthe
TPS’sabsoluteandrelativecosts.First,theTPS’sexcesscostoverC&Tincreaseswiththestringencyoftheemissions-reductiontarget.Increasedstringencyleadstohigherallowanceprices,which,asshown,givesgreaterimportancetotheTPS’simplicit
subsidy.ThisexplainstheobservedgrowinggapovertimeintheTPS’saggregate
abatementcostrelativetotheaggregatecostunderC&Tasstringencyincreasesandallowancepricesrise.Second,therelativecostsalsodependontheextentofpre-
9Rennertetal.(2022)estimatetheSCC(evaluatedin2020)tobe1,277RMB(185USdollars)pertonofCO2;CarletonandGreenstone(2022)suggestusing863RMB(125USdollars)pertonofCO2.TheserecentestimationsaremuchhigherthantheBidenadministration’scentralestimateof353RMB(51USdollars)perton.
10WeobtaintheeconomywidemarginalcostbyevaluatingthecumulativeeconomywidecostfromanincrementaltighteningofbenchmarksrelativetotheirvaluesundertheTPSinthe
centralcase.Specifically,theaveragemarginalcostpertonisthepresentvalueofcumulativechangeinGDPover2020–2035dividedbytheassociatedcumulativechangeinemissions
relativetothebaseline,usinganannualdiscountrateof5percent.Theeconomywidemarginalcostofabatementisdifferentfromt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年花卉托管協(xié)議
- 2024年度中外農(nóng)產(chǎn)品進出口貿(mào)易合同3篇
- 2024建筑安裝工程勞務(wù)分包合同模板
- 2024年版汽車金融借款合同模板一
- 2024校醫(yī)校園心理危機干預(yù)與心理咨詢服務(wù)合同3篇
- 2024年起重機維修保養(yǎng)與購銷一體化合同范本3篇
- 2024房屋買賣詳細協(xié)議條款匯編版B版
- 2024年版人工智能語音助手授權(quán)使用協(xié)議
- 2024年訴訟代理常年法律顧問服務(wù)協(xié)議3篇
- 環(huán)保行業(yè)員工培訓(xùn)需求調(diào)查
- 2024信息技術(shù)應(yīng)用創(chuàng)新信息系統(tǒng)適配改造成本度量
- 廣東省廣州市2025屆高三上學(xué)期12月調(diào)研測試(零模)英語 含解析
- 陜西測繪地理信息局所屬事業(yè)單位2025年上半年招聘87人和重點基礎(chǔ)提升(共500題)附帶答案詳解
- 保險學(xué)期末試題及答案
- 高一數(shù)學(xué)上學(xué)期期末模擬試卷01-【中職專用】2024-2025學(xué)年高一數(shù)學(xué)上學(xué)期(高教版2023基礎(chǔ)模塊)(解析版)
- 嚴重精神障礙患者隨訪服務(wù)記錄表
- 2024-2025學(xué)年人教版八年級上冊地理期末測試卷(一)(含答案)
- 統(tǒng)編版(2024新版)七年級上冊道德與法治第四單元綜合測試卷(含答案)
- 滬教版英語小學(xué)六年級上學(xué)期期末試題與參考答案(2024-2025學(xué)年)
- 北京市海淀區(qū)2023-2024學(xué)年四年級上學(xué)期語文期末試卷
- 混凝土企業(yè)安全培訓(xùn)
評論
0/150
提交評論