![勾股定理數(shù)學(xué)知識提綱_第1頁](http://file4.renrendoc.com/view12/M08/36/09/wKhkGWXexweAU7BbAAIjezjRm3Q684.jpg)
![勾股定理數(shù)學(xué)知識提綱_第2頁](http://file4.renrendoc.com/view12/M08/36/09/wKhkGWXexweAU7BbAAIjezjRm3Q6842.jpg)
![勾股定理數(shù)學(xué)知識提綱_第3頁](http://file4.renrendoc.com/view12/M08/36/09/wKhkGWXexweAU7BbAAIjezjRm3Q6843.jpg)
![勾股定理數(shù)學(xué)知識提綱_第4頁](http://file4.renrendoc.com/view12/M08/36/09/wKhkGWXexweAU7BbAAIjezjRm3Q6844.jpg)
![勾股定理數(shù)學(xué)知識提綱_第5頁](http://file4.renrendoc.com/view12/M08/36/09/wKhkGWXexweAU7BbAAIjezjRm3Q6845.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
勾股定理數(shù)學(xué)知識提綱數(shù)學(xué)是中考重要科目,想要學(xué)好數(shù)學(xué),首先要找到學(xué)習(xí)的竅門,這樣可以讓我們事半功倍。下面小編給大家分享一些勾股定理數(shù)學(xué)知識提綱,希望能夠幫助大家,歡迎閱讀
勾股定理數(shù)學(xué)知識提綱
勾股定理直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即
a2+b2=c2.
勾股定理逆定理如果三角形三邊長a,b,c有下面關(guān)系:
a2+b2=c2
那么這個三角形是直角三角形.
早在3000年前,我國已有“勾廣三,股修四,徑陽五”的說法.
關(guān)于勾股定理,有很多證法,在我國它們都是用拼圖形面積方法來證明的.下面的證法1是歐幾里得證法.
證法1如圖2-16所示.在Rt△ABC的外側(cè),以各邊為邊長分別作正方形ABDE,BCHK,ACFG,它們的面積分別是c2,a2,b2.下面證明,大正方形的面積等于兩個小正方形的面積之和.
過C引CM∥BD,交AB于L,連接BG,CE.因為
AB=AE,AC=AG,∠CAE=∠BAG,
所以△ACE≌△AGB(SAS).而
所以SAEML=b2.①
同理可證SBLMD=a2.②
①+②得
SABDE=SAEML+SBLMD=b2+a2,
即c2=a2+b2.
證法2如圖2-17所示.將Rt△ABC的兩條直角邊CA,CB分別延長到D,F(xiàn),使AD=a,BF=b.完成正方形CDEF(它的邊長為a+b),又在DE上截取DG=b,在EF上截取EH=b,連接AG,GH,HB.由作圖易知
△ADG≌△GEH≌△HFB≌△ABC,
所以
AG=GH=HB=AB=c,
∠BAG=∠AGH=∠GHB=∠HBA=90°,
因此,AGHB為邊長是c的正方形.顯然,正方形CDEF的面積等于正方形AGHB的面積與四個全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面積和,即
化簡得a2+b2=c2.
證法3如圖2-18.在直角三角形ABC的斜邊AB上向外作正方形ABDE,延長CB,自E作EG⊥CB延長線于G,自D作DK⊥CB延長線于K,又作AF,DH分別垂直EG于F,H.由作圖不難證明,下述各直角三角形均與Rt△ABC全等:
△AFE≌△EHD≌△BKD≌△ACB.
設(shè)五邊形ACKDE的面積為S,一方面
S=SABDE+2S△ABC,①
另一方面
S=SACGF+SHGKD+2S△ABC.②
由①,②
所以c2=a2+b2.
關(guān)于勾股定理,在我國古代還有很多類似上述拼圖求積的證明方法,我們將在習(xí)題中展示其中一小部分,它們都以中國古代數(shù)學(xué)家的名字命名.
利用勾股定理,在一般三角形中,可以得到一個更一般的結(jié)論.
定理在三角形中,銳角(或鈍角)所對的邊的平方等于另外兩邊的平方和,減去(或加上)這兩邊中的一邊與另一邊在這邊(或其延長線)上的射影的乘積的2倍.
證(1)設(shè)角C為銳角,如圖2-19所示.作AD⊥BC于D,則CD就是AC在BC上的射影.在直角三角形ABD中,
AB2=AD2+BD2,①
在直角三角形ACD中,
AD2=AC2-CD2,②
又
BD2=(BC-CD)2,③
②,③代入①得
AB2=(AC2-CD2)+(BC-CD)2
=AC2-CD2+BC2+CD2-2BC?CD
=AC2+BC2-2BC?CD,
即
c2=a2+b2-2a?CD.④
(2)設(shè)角C為鈍角,如圖2-20所示.過A作AD與BC延長線垂直于D,則CD就是AC在BC(延長線)上的射影.在直角三角形ABD中,
AB2=AD2+BD2,⑤
在直角三角形ACD中,
AD2=AC2-CD2,⑥
又
BD2=(BC+CD)2,⑦
將⑥,⑦代入⑤得
AB2=(AC2-CD2)+(BC+CD)2
=AC2-CD2+BC2+CD2+2BC?CD
=AC2+BC2+2BC?CD,
即
c2=a2+b2+2a?cd.⑧
綜合④,⑧就是我們所需要的結(jié)論
特別地,當(dāng)∠C=90°時,CD=0,上述結(jié)論正是勾股定理的表述:
c2=a2+b2.
因此,我們常又稱此定理為廣勾股定理(意思是勾股定理在一般三角形中的推廣).
由廣勾股定理我們可以自然地推導(dǎo)出三角形三邊關(guān)系對于角的影響.在△ABC中,
(1)若c2=a2+b2,則∠C=90°;
(2)若c2
(3)若c2>a2+b2,則∠C>90°.
勾股定理及廣勾股定理深刻地揭示了三角形內(nèi)部的邊角關(guān)系,因此在解決三角形(及多邊形)的問題中有著廣泛的應(yīng)用.
例1如圖2-21所示.已知:在正方形ABCD中,∠BAC的平分線交BC于E,作EF⊥AC于F,作FG⊥AB于G.求證:AB2=2FG2.
分析注意到正方形的特性∠CAB=45°,所以△AGF是等腰直角三角形,從而有AF2=2FG2,因而應(yīng)有AF=AB,這啟發(fā)我們?nèi)プC明△ABE≌△AFE.
證因為AE是∠FAB的平分線,EF⊥AF,又AE是△AFE與△ABE的公共邊,所以
Rt△AFE≌Rt△ABE(AAS),
所以AF=AB.①
在Rt△AGF中,因為∠FAG=45°,所以
AG=FG,
AF2=AG2+FG2=2FG2.②
由①,②得
AB2=2FG2.
說明事實上,在審題中,條件“AE平分∠BAC”及“EF⊥AC于F”應(yīng)使我們意識到兩個直角三角形△AFE與△ABE全等,從而將AB“過渡”到AF,使AF(即AB)與FG處于同一個直角三角形中,可以利用勾股定理進行證明了.
例2如圖2-22所示.AM是△ABC的BC邊上的中線,求證:AB2+AC2=2(AM2+BM2).
證過A引AD⊥BC于D(不妨設(shè)D落在邊BC內(nèi)).由廣勾股定理,在△ABM中,
AB2=AM2+BM2+2BM?MD.①
在△ACM中,
AC2=AM2+MC2-2MC?MD.②
①+②,并注意到MB=MC,所以
AB2+AC2=2(AM2+BM2).③
如果設(shè)△ABC三邊長分別為a,b,c,它們對應(yīng)邊上的中線長分別為ma,mb,mc,由上述結(jié)論不難推出關(guān)于三角形三條中線長的公式.
推論△ABC的中線長公式:
說明三角形的中線將三角形分為兩個三角形,其中一個是銳角三角形,另一個是鈍角三角形(除等腰三角形外).利用廣勾股定理恰好消去相反項,獲得中線公式.①′,②′,③′中的ma,mb,mc分別表示a,b,c邊上的中線長.
例3如圖2-23所示.求證:任意四邊形四條邊的平方和等于對角線的平方和加對角線中點連線平方的4倍.
分析如圖2-23所示.對角線中點連線PQ,可看作△BDQ的中線,利用例2的結(jié)論,不難證明本題.
證設(shè)四邊形ABCD對角線AC,BD中點分別是Q,P.由例2,在△BDQ中,
即
2BQ2+2DQ2=4PQ2+BD2.①
在△ABC中,BQ是AC邊上的中線,所以
在△ACD中,QD是AC邊上的中線,所以
將②,③代入①得
=4PQ2+BD2,
即
AB2+BC2+CD2+DA2=AC2+BD2+4PQ2.
說明本題是例2的應(yīng)用.善于將要解決的問題轉(zhuǎn)化為已解決的問題,是人們解決問題的一種基本方法,即化未知為已知的方法.下面,我們再看兩個例題,說明這種轉(zhuǎn)化方法的應(yīng)用.
例4如圖2-24所示.已知△ABC中,∠C=90°,D,E分別是BC,AC上的任意一點.求證:AD2+BE2=AB2+DE2.
分析求證中所述的4條線段分別是4個直角三角形的斜邊,因此考慮從勾股定理入手.
證AD2=AC2+CD2,BE2=BC2+CE2,所以
AD2+BE2=(AC2+BC2)+(CD2+CE2)=AB2+DE2
例5求證:在直角三角形中兩條直角邊上的中線的平方和的4倍等于斜邊平方的5倍.
如圖2-25所示.設(shè)直角三角形ABC中,∠C=90°,AM,BN分別是BC,AC邊上的中線.求證:
4(AM2+BN2)=5AB2.
分析由于AM,BN,AB均可看作某個直角三角形的斜邊,因此,仿例4的方法可從勾股定理入手,但如果我們能將本題看成例4的特殊情況――即M,N分別是所在邊的中點,那么可直接利用例4的結(jié)論,使證明過程十分簡潔.
證連接MN,利用例4的結(jié)論,我們有
AM2+BN2=AB2+MN2,
所以4(AM2+BN2)=4AB2+4MN2.①
由于M,N是BC,AC的中點,所以
所以4MN2=AB2.②
由①,②
4(AM2+BN2)=5AB2.
說明在證明中,線段MN稱為△ABC的中位線,以后會知道中位線的基本性質(zhì):“MN∥AB且MN=圖2-26所示.MN是△ABC的一條中位線,設(shè)△ABC的面積為S.由于M,N分別是所在邊的中點,所以S△ACM=S△BCN,兩邊減去公共部分△CMN后得S△AMN=S△BMN,從而AB必與MN平行.又S△ABM=高相同,而S△ABM=2S△BMN,所以AB=2MN.
初中數(shù)學(xué)要怎么學(xué)
1、課前預(yù)習(xí)
預(yù)習(xí)是學(xué)習(xí)的第一步,通過預(yù)習(xí)可以更好地聽老師講課,提高學(xué)習(xí)效率。學(xué)生在上課之前有過預(yù)習(xí),可以對新知識有初步的了解,并且找到不明白的問題,從而在課堂上實現(xiàn)針對性地的聽講。
2、課后復(fù)習(xí)
復(fù)習(xí)是對已學(xué)知識的鞏固和強化,通過復(fù)習(xí)可以加深對知識的記憶,從而達到鞏固的效果。學(xué)生在課后要及時復(fù)習(xí),減緩遺忘速度,形成對新知識的深刻印象。
數(shù)學(xué)答題技巧
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 部編版道德與法治九年級下冊第二單元第三課《與世界緊相連第2框與世界深度互動》聽課評課記錄
- 2022版新課標(biāo)七年級上冊道德與法治第五課交友的智慧2課時聽課評課記錄
- 人教版數(shù)學(xué)九年級上冊《直接開平方法解方程》聽評課記錄3
- 人教版地理八年級下冊7.1《自然特征與農(nóng)業(yè)》聽課評課記錄
- 環(huán)境評估服務(wù)合同(2篇)
- 湘教版數(shù)學(xué)八年級上冊2.2《命題的證明》聽評課記錄2
- 北師大版道德與法治九年級上冊6.2《弘揚法治精神》聽課評課記錄
- 北京課改版歷史八年級上冊第10課《辛亥革命與中華民國建立》聽課評課記錄
- 湘教版數(shù)學(xué)七年級上冊《2.5整式的加法和減法(1)》聽評課記錄2
- 部編版八年級歷史上冊《第1課 鴉片戰(zhàn)爭》聽課評課記錄
- 2024年臨床醫(yī)師定期考核試題中醫(yī)知識題庫及答案(共330題) (二)
- 2025-2030年中國反滲透膜行業(yè)市場發(fā)展趨勢展望與投資策略分析報告
- 湖北省十堰市城區(qū)2024-2025學(xué)年九年級上學(xué)期期末質(zhì)量檢測道德與法治試題 (含答案)
- 山東省濰坊市2024-2025學(xué)年高三上學(xué)期1月期末 英語試題
- 春節(jié)節(jié)后收心會
- 《榜樣9》觀后感心得體會四
- 七年級下冊英語單詞表(人教版)-418個
- 2025年山東省濟寧高新區(qū)管委會“優(yōu)才”招聘20人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年中國社會科學(xué)評價研究院第一批專業(yè)技術(shù)人員招聘2人歷年高頻重點提升(共500題)附帶答案詳解
- 交警安全進校園課件
- (2024年高考真題)2024年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)試卷-新課標(biāo)Ⅰ卷(含部分解析)
評論
0/150
提交評論