2.1.1兩條直線的位置關(guān)系(第1課時(shí))(課件)-七年級數(shù)學(xué)下冊(北師大版)_第1頁
2.1.1兩條直線的位置關(guān)系(第1課時(shí))(課件)-七年級數(shù)學(xué)下冊(北師大版)_第2頁
2.1.1兩條直線的位置關(guān)系(第1課時(shí))(課件)-七年級數(shù)學(xué)下冊(北師大版)_第3頁
2.1.1兩條直線的位置關(guān)系(第1課時(shí))(課件)-七年級數(shù)學(xué)下冊(北師大版)_第4頁
2.1.1兩條直線的位置關(guān)系(第1課時(shí))(課件)-七年級數(shù)學(xué)下冊(北師大版)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

新課標(biāo)北師大版七年級下冊2.1.1兩條直線的位置關(guān)系(第1課時(shí))第二章相交線與平行線學(xué)習(xí)目標(biāo)1.通過觀看圖片,能說出同一平面內(nèi)兩條直線的位置關(guān)系,認(rèn)識平行線與相交線;2.通過觀察、測量、說理等過程,認(rèn)識對頂角,探索出“對頂角相等”的性質(zhì);3.通過具體情境,認(rèn)識補(bǔ)角、余角,探索其性質(zhì)并能解決簡單的實(shí)際問題.情境導(dǎo)入

觀察下面的幾幅生活中的圖片,想想在同一平面內(nèi),兩條直線的位置關(guān)系都有哪兩種?情境導(dǎo)入探究新知核心知識點(diǎn)一:相交線、平行線的概念結(jié)合圖像說說平面內(nèi)兩條直線的位置關(guān)系有哪些1.若兩條直線只有一個(gè)公共點(diǎn),我們稱這兩條直線為相交線.2.在同一平面內(nèi),不相交的兩條直線叫做平行線.探究新知直線a,b相交直線a,b平行思考:不相交的兩條直線一定是平行線嗎?探究新知

在同一平面內(nèi),兩條直線的位置關(guān)系有相交和平行兩種.既不相交也不平行探究新知練一練:下列說法正確是(

).A.在同一平面內(nèi),不相交的兩條射線是平行線B.在同一平面內(nèi),兩條直線不相交就重合C.在同一平面內(nèi),沒有公共點(diǎn)的兩條直線是平行線D.不相交的兩條直線是平行線直線平行在同一平面內(nèi)C探究新知核心知識點(diǎn)二:對頂角的概念及性質(zhì)如圖,直線AB與CD相交于O,1234∠1和∠2有什么位置關(guān)系?有什么大小關(guān)系?位置關(guān)系:1.∠1和∠2有公共頂點(diǎn)O;2.∠1和∠2的兩邊互為反向延長線..∠1和∠2互為對頂角.探究新知1234對頂角的定義:有公共頂點(diǎn),且兩邊互為反向延長線的兩個(gè)角叫做對頂角.∠1和∠2,∠3和∠4.圖中的對頂角有:探究新知1234對頂角的性質(zhì):對頂角相等.∠1和∠2有什么大小關(guān)系?猜想:∠1=∠2驗(yàn)證:因?yàn)椤螦OB=∠COD=180°,所以∠2+∠3=180°,∠1+∠3=180°.所以∠1=∠2.所以∠2=180°-∠3,∠1=180°-∠3.探究新知練一練:下列各圖中,∠1和∠2是對頂角的是(

)DDCBA探究新知核心知識點(diǎn)三:補(bǔ)角和余角的概念與性質(zhì)圖中,∠1和∠2是對頂角,∠3和∠4也是對頂角。1234∠1和∠3又有什么數(shù)量關(guān)系呢?∠1+∠3=180°

定義:如果兩個(gè)角的和是180o,那么稱這兩個(gè)角互為補(bǔ)角.簡稱這兩個(gè)角互補(bǔ).∠1和∠3互補(bǔ),∠1和∠4也互補(bǔ).探究新知1234

圖中,∠1和∠3有一條公共邊,另一邊互為反向延長線,這樣的兩個(gè)角叫做互為鄰補(bǔ)角.∠1和∠3互為鄰補(bǔ)角,∠1和∠4也互為鄰補(bǔ)角.注意:兩個(gè)角互補(bǔ)指的是兩個(gè)角的數(shù)量關(guān)系,與位置無關(guān)!探究新知12

如果兩個(gè)角的和是90°,那么稱這兩個(gè)角互為余角.注:兩個(gè)角不一定有公共邊.探究新知

如圖,打臺球時(shí),選擇適當(dāng)?shù)姆较?,用白球擊打紅球,反彈后的紅球會直接入袋,此時(shí)∠1=∠2.實(shí)景圖幾何圖形探究新知

如圖,ON與DC交于點(diǎn)O,∠DON=∠CON=90?,∠1=∠2.(1)有哪些角互為補(bǔ)角?有哪些角互為余角?(2)∠3與∠4有什么關(guān)系?為什么?(3)∠AOC與∠BOD有什么關(guān)系?為什么?探究新知(1)有哪些角互為補(bǔ)角?有哪些角互為余角?解:∠1與∠AOC互補(bǔ),∠2與∠BOD互補(bǔ);∠1與∠3互余,∠2與∠4互余.

如圖,ON與DC交于點(diǎn)O,∠DON=∠CON=90?,∠1=∠2.

如圖,ON與DC交于點(diǎn)O,∠DON=∠CON=90?,∠1=∠2.(2)∠3與∠4有什么關(guān)系?為什么?理由:因?yàn)椤螪ON=∠CON=90?,結(jié)論:∠3=∠4所以∠3=90?-∠1,∠4=90?-∠2.因?yàn)椤?=∠2,所以∠3=∠4.性質(zhì):同角或等角的余角相等.探究新知探究新知

如圖,ON與DC交于點(diǎn)O,∠DON=∠CON=90?,∠1=∠2.(3)∠AOC與∠BOD有什么關(guān)系?為什么?理由:因?yàn)椤螪OC=180?,結(jié)論:∠AOC=∠BOD所以∠AOC=180?-∠1,

因?yàn)椤?=∠2,所以∠AOC=∠BOD.

∠BOD=180?-∠2.性質(zhì):同角或等角的補(bǔ)角相等.探究新知?dú)w納總結(jié)互余互補(bǔ)兩角間的數(shù)量關(guān)系對應(yīng)圖形性質(zhì)同角或等角的余角相等同角或等角的補(bǔ)角相等互余與互補(bǔ)只與角的數(shù)值有關(guān),與位置無關(guān)。而對頂角是根據(jù)角的位置來判斷的隨堂練習(xí)1.下列圖形中,∠1與∠2是對頂角的是(

)B隨堂練習(xí)2.已知,∠α=35°,則∠α的余角的度數(shù)是(

)A.55°B.65°C.145°D.155°A3.如果一個(gè)角的補(bǔ)角是120°,那么這個(gè)角是(

)A.150°B.90°C.60°D.30°C隨堂練習(xí)4.如圖,直線AB,CD,EF相交于點(diǎn)O,則∠1+∠2+∠3等于(

)A.90°B.150°C.180°D.210°,C隨堂練習(xí)5.如圖,∠1與∠2不是互余關(guān)系的是(

)C隨堂練習(xí)6.圖中是對頂角量角器,用它測量角的原理是________________.對頂角相等隨堂練習(xí)7.如圖,a,b相交于點(diǎn)O,∠2=2∠1,求∠3的度數(shù).解:∵O是直線a上的點(diǎn)∴∠1+∠2=180°又∵∠2=2∠1∴2∠1+∠1=180°∴∠1=60°∵∠1與∠3是對頂角∴∠3=∠1=60°隨堂練習(xí)8.如圖,∠AOB=∠COD=90°.(1)若∠1∶∠2=2∶7,求∠1,∠2的度數(shù);(2)試說明∠1和∠2的關(guān)系.解:(1)∵∠1+∠2+∠AOB+∠COD=360°,∠AOB=∠COD=90°∴∠1+∠2=180°又∵∠1∶∠2=2∶7∴∠1=

×180°=40°,∠2=

×180°=140°隨堂練習(xí)8.如圖,∠AOB=∠COD=90°.(1)若∠1∶∠2=2∶7,求∠1,∠2的度數(shù);(2)試說明∠1和∠2的關(guān)系.(2)由(1)知∠1+∠2=180°,∴∠1與∠2互補(bǔ).課堂小結(jié)1.同一平面內(nèi)兩線的位置關(guān)系:相交和平行2.對頂角及其性質(zhì):(1)對頂角的兩邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論