版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
甘肅省武威市重點中學(xué)2023-2024學(xué)年高考數(shù)學(xué)二模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或12.已知是第二象限的角,,則()A. B. C. D.3.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.4.設(shè)過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關(guān)于軸對稱,為坐標原點,若,且,則點的軌跡方程是()A. B.C. D.5.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.6.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)7.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.38.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.59.已知實數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.10.已知全集,集合,則=()A. B.C. D.11.1777年,法國科學(xué)家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發(fā)許多等質(zhì)量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統(tǒng)計,發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.12.已知函數(shù)在上有兩個零點,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)為偶函數(shù),則________.14.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.15.的展開式中含的系數(shù)為__________.(用數(shù)字填寫答案)16.若雙曲線的離心率為,則雙曲線的漸近線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)中,內(nèi)角的對邊分別為,.(1)求的大??;(2)若,且為的重心,且,求的面積.18.(12分)2019年9月26日,攜程網(wǎng)發(fā)布《2019國慶假期旅游出行趨勢預(yù)測報告》,2018年國慶假日期間,西安共接待游客1692.56萬人次,今年國慶有望超過2000萬人次,成為西部省份中接待游客量最多的城市.旅游公司規(guī)定:若公司某位導(dǎo)游接待旅客,旅游年總收人不低于40(單位:萬元),則稱該導(dǎo)游為優(yōu)秀導(dǎo)游.經(jīng)驗表明,如果公司的優(yōu)秀導(dǎo)游率越高,則該公司的影響度越高.已知甲、乙家旅游公司各有導(dǎo)游40名,統(tǒng)計他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:分組頻數(shù)(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?(2)從甲、乙兩家公司旅游總收人在(單位:萬元)的導(dǎo)游中,隨機抽取3人進行業(yè)務(wù)培訓(xùn),設(shè)來自甲公司的人數(shù)為,求的分布列及數(shù)學(xué)期望.19.(12分)某工廠,兩條相互獨立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設(shè)不合格的產(chǎn)品均可進行返工修復(fù)為合格品,以(1)中確定的作為的值.①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回損失元和元.若從兩條生產(chǎn)線上各隨機抽檢件產(chǎn)品,以挽回損失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線挽回的損失較多?②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機抽取件進行檢測,結(jié)果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時利潤的期望值.20.(12分)已知數(shù)列的各項均為正數(shù),為其前n項和,對于任意的滿足關(guān)系式.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的通項公式是,前n項和為,求證:對于任意的正數(shù)n,總有.21.(12分)已知公差不為零的等差數(shù)列的前n項和為,,是與的等比中項.(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項公式.22.(10分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.2、D【解析】
利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導(dǎo)公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.3、A【解析】
作出不等式組表示的可行域,然后對四個選項一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.4、A【解析】
設(shè)坐標,根據(jù)向量坐標運算表示出,從而可利用表示出;由坐標運算表示出,代入整理可得所求的軌跡方程.【詳解】設(shè),,其中,,即關(guān)于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標運算、數(shù)量積運算;關(guān)鍵是利用動點坐標表示出變量,根據(jù)平面向量數(shù)量積的坐標運算可整理得軌跡方程.5、B【解析】
先設(shè)直線與圓相切于點,根據(jù)題意,得到,再由,根據(jù)勾股定理求出,從而可得漸近線方程.【詳解】設(shè)直線與圓相切于點,因為是以圓的直徑為斜邊的圓內(nèi)接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質(zhì)即可,屬于??碱}型.6、C【解析】
根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【點睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.7、A【解析】
將圓的方程化簡成標準方程,再根據(jù)垂徑定理求解即可.【詳解】圓的標準方程,圓心坐標為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.8、D【解析】
利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【點睛】本題考查了線性回歸方程過樣本中心點的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.9、B【解析】
畫出可行域,根據(jù)可行域上的點到原點距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點到原點距離的平方,顯然原點到所在的直線的距離是可行域內(nèi)的點到原點距離的最小值,此時,點到原點的距離是可行域內(nèi)的點到原點距離的最大值,此時.所以的取值范圍是.故選:B【點睛】本小題考查線性規(guī)劃,兩點間距離公式等基礎(chǔ)知識;考查運算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識.10、D【解析】
先計算集合,再計算,最后計算.【詳解】解:,,.故選:.【點睛】本題主要考查了集合的交,補混合運算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.11、D【解析】
根據(jù)統(tǒng)計數(shù)據(jù),求出頻率,用以估計概率.【詳解】.故選:D.【點睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計概率,屬于基礎(chǔ)題.12、C【解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點處的函數(shù)值進行判斷求解.【詳解】∵,.當時,,在上單調(diào)遞增,不合題意.當時,,在上單調(diào)遞減,也不合題意.當時,則時,,在上單調(diào)遞減,時,,在上單調(diào)遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
二次函數(shù)為偶函數(shù)說明一次項系數(shù)為0,求得參數(shù),將代入表達式即可求解【詳解】由為偶函數(shù),知其一次項的系數(shù)為0,所以,,所以,故答案為:-5【點睛】本題考查由奇偶性求解參數(shù),求函數(shù)值,屬于基礎(chǔ)題14、【解析】
由可知R為中點,設(shè),由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點,所以,,設(shè),則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以O(shè)Q為直徑的圓上,所以.故答案為:.【點睛】本題考查直線和圓的位置關(guān)系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學(xué)生的數(shù)形結(jié)合能力和計算能力,難度較難.15、【解析】由題意得,二項式展開式的通項為,令,則,所以得系數(shù)為.16、【解析】
利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因為雙曲線的離心率為,所以,即,因為雙曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【點睛】本題考查雙曲線的幾何性質(zhì);考查運算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用正弦定理,轉(zhuǎn)化為,分析運算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.18、(1),乙公司影響度高;(2)見解析,【解析】
(1)利用各小矩形的面積和等于1可得a,由導(dǎo)游人數(shù)為40人可得b,再由總收人不低于40可計算出優(yōu)秀率;(2)易得總收入在中甲公司有4人,乙公司有2人,則甲公司的人數(shù)的值可能為1,2,3,再計算出相應(yīng)取值的概率即可.【詳解】(1)由直方圖知,,解得,由頻數(shù)分布表中知:,解得.所以,甲公司的導(dǎo)游優(yōu)秀率為:,乙公司的導(dǎo)游優(yōu)秀率為:,由于,所以乙公司影響度高.(2)甲公司旅游總收入在中的有人,乙公司旅游總收入在中的有2人,故的可能取值為1,2,3,易知:,;.所以的分布列為:123P.【點睛】本題考查頻率分布直方圖、隨機變量的分布列與期望,考查學(xué)生數(shù)據(jù)處理與數(shù)學(xué)運算的能力,是一道中檔題.19、(1)(2)①生產(chǎn)線上挽回的損失較多.②見解析【解析】
(1)由題意得到關(guān)于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項分布的期望公式和數(shù)學(xué)期望的性質(zhì)給出結(jié)論即可;②.由題意首先確定X可能的取值,然后求得相應(yīng)的概率值可得分布列,最后由分布列可得利潤的期望值.【詳解】(1)設(shè)從,生產(chǎn)線上各抽檢一件產(chǎn)品,至少有一件合格為事件,設(shè)從,生產(chǎn)線上抽到合格品分別為事件,,則,互為獨立事件由已知有,則解得,則的最小值(2)由(1)知,生產(chǎn)線的合格率分別為和,即不合格率分別為和.①設(shè)從,生產(chǎn)線上各抽檢件產(chǎn)品,抽到不合格產(chǎn)品件數(shù)分別為,,則有,,所以,生產(chǎn)線上挽回損失的平均數(shù)分別為:,所以生產(chǎn)線上挽回的損失較多.②由已知得的可能取值為,,,用樣本估計總體,則有,,所以的分布列為所以(元)故估算估算該廠產(chǎn)量件時利潤的期望值為(元)【點睛】本題主要考查概率公式的應(yīng)用,二項分布的性質(zhì)與方差的求解,離散型隨機變量及其分布列的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.20、(1)(2)證明見解析【解析】
(1)根據(jù)公式得到,計算得到答案.(2),根據(jù)裂項求和法計算得到,得到證明.【詳解】(1)由已知得時,,故.故數(shù)列為等比數(shù)列,且公比.又當時,,..(2)..【點睛】本題考查了數(shù)列通項公式和證明數(shù)列不等式,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.21、(1);(2).【解析】
(1)根據(jù)題意,建立首項和公差的方程組,通過基本量即可寫出前項和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因為,所以,所以.(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國奢侈品箱包行業(yè)規(guī)模分析及投資策略研究報告
- 2024-2030年中國半纖維素酶行業(yè)運行狀況及投資發(fā)展前景預(yù)測報告
- 2024年生產(chǎn)車間租賃與產(chǎn)業(yè)基金投資服務(wù)合同3篇
- 質(zhì)量監(jiān)督程序
- 詹凱煜畢業(yè)設(shè)計報告書論文
- 2024年度高層建筑基礎(chǔ)施工混凝土供應(yīng)合同范本3篇
- 海南省部分學(xué)校2021-2022學(xué)年高一上學(xué)期期中考試歷史試題
- 2024年城市宣傳片制作與發(fā)布合同范本3篇
- 2025年嘉峪關(guān)道路貨運駕駛員從業(yè)資格證考試
- 2025投影系統(tǒng)設(shè)備購銷合同書
- 項目全周期現(xiàn)金流管理培訓(xùn)
- 生物化學(xué)實驗智慧樹知到答案章節(jié)測試2023年浙江大學(xué)
- PPT2023版中國近現(xiàn)代史綱要課件第十一專題決定當代中國命運的關(guān)鍵一招PPT
- 義務(wù)教育化學(xué)課程標準(2022年版)
- 2023年朱文峰《中醫(yī)診斷學(xué)》視頻講稿
- 少兒美術(shù)教案課件-《美麗的楓葉》
- 中國傳統(tǒng)文化剪紙PPT模板
- 健康生活方式與慢性病
- 系列壓路機xmr30s40s操作保養(yǎng)手冊
- 廣州教科版六年級英語上冊M1-6復(fù)習(xí)練習(xí)題(含答案)
- GB/T 37136-2018電力用戶供配電設(shè)施運行維護規(guī)范
評論
0/150
提交評論