版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年安徽省黃山一中高考壓軸卷數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%2.已知集合,,若,則()A.4 B.-4 C.8 D.-83.設函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當時,.若存在,且為函數(shù)的一個零點,則實數(shù)的取值范圍為()A. B. C. D.4.下列函數(shù)中,在區(qū)間上單調(diào)遞減的是()A. B. C. D.5.蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎的一種計算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點實現(xiàn)統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現(xiàn)向一邊長為的正方形模型內(nèi)均勻投點,落入陰影部分的概率為,則圓周率()A. B.C. D.6.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.7.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.8.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進行分析,隨機抽取了200分到450分之間的2000名學生的成績,并根據(jù)這2000名學生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內(nèi)的學生人數(shù)為()A.800 B.1000 C.1200 D.16009.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數(shù)m的最小值是()A. B.3 C. D.10.已知全集為,集合,則()A. B. C. D.11.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.12.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則________.14.設復數(shù)滿足,則_________.15.已知復數(shù),其中是虛數(shù)單位.若的實部與虛部相等,則實數(shù)的值為__________.16.設變量,,滿足約束條件,則目標函數(shù)的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點,與相交于點.(1)求證:平面;(2)求直線與平面所成的角的正弦值.18.(12分)已知直線與拋物線交于兩點.(1)當點的橫坐標之和為4時,求直線的斜率;(2)已知點,直線過點,記直線的斜率分別為,當取最大值時,求直線的方程.19.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.20.(12分)甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數(shù)記為.(1)求的分布列及數(shù)學期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數(shù)的取值范圍.21.(12分)已知中,,,是上一點.(1)若,求的長;(2)若,,求的值.22.(10分)已知a,b∈R,設函數(shù)f(x)=(I)若b=0,求f(x)的單調(diào)區(qū)間:(II)當x∈[0,+∞)時,f(x)的最小值為0,求a+5b的最大值.注:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:由題意故選B.考點:正態(tài)分布2、B【解析】
根據(jù)交集的定義,,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎題.3、D【解析】
先構造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導,判斷其單調(diào)性,進而可求出結果.【詳解】構造函數(shù),因為,所以,所以為奇函數(shù),當時,,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數(shù)的一個零點,所以在時有一個零點因為當時,,所以函數(shù)在時單調(diào)遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【點睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.4、C【解析】
由每個函數(shù)的單調(diào)區(qū)間,即可得到本題答案.【詳解】因為函數(shù)和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數(shù)的單調(diào)區(qū)間,屬基礎題.5、A【解析】
計算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎題.6、B【解析】
先判斷命題的真假,進而根據(jù)復合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.7、B【解析】
求得直線的方程,聯(lián)立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據(jù)列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經(jīng)過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質(zhì),考查運算求解能力,屬于中檔題.8、B【解析】
由圖可列方程算得a,然后求出成績在內(nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績在內(nèi)的學生人數(shù).【詳解】由頻率和為1,得,解得,所以成績在內(nèi)的頻率,所以成績在內(nèi)的學生人數(shù).故選:B【點睛】本題主要考查頻率直方圖的應用,屬基礎題.9、D【解析】
設點,由,得關于的方程.由題意,該方程有解,則,求出正實數(shù)m的取值范圍,即求正實數(shù)m的最小值.【詳解】由題意,設點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內(nèi)兩點間距離公式,屬于中檔題.10、D【解析】
對于集合,求得函數(shù)的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數(shù)的定義域,考查解一元二次不等式.11、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.12、D【解析】
通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】
由導函數(shù)的應用得:設,,所以,,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【詳解】解:設,,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點睛】本題考查了導函數(shù)的應用、二項式定理,屬于中檔題14、.【解析】
利用復數(shù)的運算法則首先可得出,再根據(jù)共軛復數(shù)的概念可得結果.【詳解】∵復數(shù)滿足,∴,∴,故而可得,故答案為.【點睛】本題考查了復數(shù)的運算法則,共軛復數(shù)的概念,屬于基礎題.15、【解析】
直接由復數(shù)代數(shù)形式的乘法運算化簡,結合已知條件即可求出實數(shù)的值.【詳解】解:的實部與虛部相等,所以,計算得出.故答案為:【點睛】本題考查復數(shù)的乘法運算和復數(shù)的概念,屬于基礎題.16、7【解析】作出不等式組表示的平面區(qū)域,得到如圖的△ABC及其內(nèi)部,其中A(2,1),B(1,2),C(4,5)設z=F(x,y)=2x+3y,將直線l:z=2x+3y進行平移,當l經(jīng)過點A時,目標函數(shù)z達到最小值∴z最小值=F(2,1)=7三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,即可:(2)取中點,連,以為原點,分別為軸建立空間直角坐標系,分別求出與平面的法向量,再利用計算即可.【詳解】(1)∵底面為菱形,∵直棱柱平面.∵平面..平面;(2)如圖,取中點,連,以為原點,分別為軸建立如圖所示空間直角坐標系:,點,設平面的法向量為,,有,令,得又,設直線與平面所成的角為,所以故直線與平面所成的角的正弦值為.【點睛】本題考查線面垂直的證明以及向量法求線面角的正弦值,考查學生的運算求解能力,本題解題關鍵是正確寫出點的坐標.18、(1)(2)【解析】
(1)設,根據(jù)直線的斜率公式即可求解;(2)設直線的方程為,聯(lián)立直線與拋物線方程,由韋達定理得,,結合直線的斜率公式得到,換元后討論的符號,求最值可求解.【詳解】(1)設,因為,即直線的斜率為1.(2)顯然直線的斜率存在,設直線的方程為.聯(lián)立方程組,可得則,令,則則當時,;當且僅當,即時,解得時,取“=”號,當時,;當時,綜上所述,當時,取得最大值,此時直線的方程是.【點睛】本題主要考查了直線的斜率公式,直線與拋物線的位置關系,換元法,均值不等式,考查了運算能力,屬于難題.19、(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標系,求出長,寫出各點坐標,用向量法求二面角.【詳解】解:(1)當為上靠近點的三等分點時,滿足面.證明如下,取中點,連結.即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標系,如圖,設面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【點睛】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問題可通過面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉化、相互依存的.求空間角一般是建立空間直角坐標系,用空間向量法求空間角.20、(1),ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)【解析】(1)P(ξ)是“ξ個人命中,3-ξ個人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的數(shù)學期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.21、(1)(2)【解析】
(1)運用三角形面積公式求出的長度,然后再運用余弦定理求出的長.(2)運用正弦定理分別表示出和,結合已知條件計算出結果.【詳解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【點睛】本題考查了正弦定理、三角形面積公式以及余弦定理,結合三角形熟練運用各公式是解題關鍵,此類題目是??碱}型,能夠運用公式進行邊角互化,需要掌握解題方法.22、(I)詳見解析;(II)2【解析】
(I)求導得到f'(x)=ex-a,討論a≤0(II)f12=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省眉山市仁壽縣2024-2025學年高二上學期1月期末聯(lián)考地理試卷(含答案)
- 湖南省益陽市沅江市兩校聯(lián)考2024-2025學年九年級上學期1月期末考試歷史試卷(含答案)
- 廣東省揭陽市普寧市2024-2025學年高二上學期期末考試英語試題(無答案)
- 2024物業(yè)租賃合同履行保證
- 色酒調(diào)酒知識培訓課件
- 福建省南平市九三英華高級中學高一英語模擬試卷含解析
- 2024語音識別與自然語言處理合同
- 2025年度互聯(lián)網(wǎng)企業(yè)新媒體運營實習協(xié)議范本3篇
- 2024年音樂會上演藝人委托合同2篇
- 2024年限量版豪宅營銷策劃與銷售代表協(xié)議版B版
- 高考英語必背688個高頻詞匯
- 《隱私計算金融應用白皮書(2022)》
- 建筑工程招標方案
- 2024年中職《餐飲服務與管理》職教高考必備考試題庫(含答案)
- 【閱讀提升】部編版語文五年級下冊第三單元閱讀要素解析 類文閱讀課外閱讀過關(含答案)
- 足球教練員培訓課件
- 招商崗位轉正述職報告
- 生產(chǎn)主管年終總結
- 羽絨服委托加工合同
- 四年級下冊混合運算100道及答案
- 新概念英語第2冊課文(完整版)
評論
0/150
提交評論