版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
概率論與數(shù)理統(tǒng)計隨機變量及其分布匯報人:AA2024-01-19隨機變量及其分布概述常見離散型隨機變量分布常見連續(xù)型隨機變量分布隨機變量函數(shù)的分布多維隨機變量及其分布隨機變量的數(shù)字特征與極限定理目錄01隨機變量及其分布概述隨機變量是定義在樣本空間上的實值函數(shù),它將樣本空間中的每一個樣本點映射到一個實數(shù)。隨機變量定義隨機變量具有可測性、單調(diào)性和有界性等基本性質(zhì)。其中,可測性是指隨機變量的取值可以被概率測度所描述;單調(diào)性是指隨機變量的取值在一定條件下具有單調(diào)遞增或遞減的性質(zhì);有界性是指隨機變量的取值范圍在一定條件下是有限的。隨機變量性質(zhì)隨機變量定義與性質(zhì)分布律定義離散型隨機變量的分布律是指描述隨機變量取各個值的概率的規(guī)律,通常用分布列或分布函數(shù)表示。常見離散型隨機變量分布常見離散型隨機變量分布包括二項分布、泊松分布、幾何分布等。離散型隨機變量定義離散型隨機變量是指其取值只能是有限個或可列個實數(shù)的隨機變量。離散型隨機變量及其分布律01連續(xù)型隨機變量是指其取值可以充滿某個區(qū)間或多個區(qū)間的隨機變量。連續(xù)型隨機變量定義02連續(xù)型隨機變量的概率密度函數(shù)是一個描述隨機變量取值概率分布情況的函數(shù),通常簡稱為密度函數(shù)。概率密度函數(shù)定義03常見連續(xù)型隨機變量分布包括均勻分布、正態(tài)分布、指數(shù)分布等。常見連續(xù)型隨機變量分布連續(xù)型隨機變量及其概率密度函數(shù)分布函數(shù)與隨機變量的關(guān)系分布函數(shù)是一個描述隨機變量取值落在某個區(qū)間內(nèi)的概率的函數(shù),通常記為F(x)。對于離散型隨機變量,其分布函數(shù)為階梯狀;對于連續(xù)型隨機變量,其分布函數(shù)為連續(xù)曲線。分布函數(shù)定義分布函數(shù)與隨機變量之間存在密切的關(guān)系。一方面,分布函數(shù)可以完全確定一個隨機變量的概率分布情況;另一方面,通過隨機變量的取值可以求得相應(yīng)的分布函數(shù)的值。因此,在概率論與數(shù)理統(tǒng)計中,常常通過研究分布函數(shù)來了解和分析隨機變量的性質(zhì)和行為。分布函數(shù)與隨機變量的關(guān)系02常見離散型隨機變量分布概率質(zhì)量函數(shù)P{X=k}=C_n^kp^k(1-p)^(n-k),k=0,1,2,...,n。期望和方差E(X)=np,D(X)=np(1-p)。定義在n次獨立重復(fù)的伯努利試驗中,設(shè)每次試驗成功的概率為p,則成功次數(shù)X服從參數(shù)為n,p的二項分布。二項分布定義泊松分布是一種描述單位時間內(nèi)隨機事件發(fā)生的次數(shù)的概率分布。泊松分布的參數(shù)是單位時間(或單位面積)內(nèi)隨機事件的平均發(fā)生率λ。概率質(zhì)量函數(shù)P{X=k}=(λ^k/k!)e^(-λ),k=0,1,2,...。期望和方差E(X)=λ,D(X)=λ。泊松分布定義在伯努利試驗中,記每次試驗中事件A發(fā)生的概率為p,試驗進行到事件A首次出現(xiàn)為止,此時所進行的試驗次數(shù)X服從參數(shù)為p的幾何分布。概率質(zhì)量函數(shù)P{X=k}=(1-p)^(k-1)p,k=1,2,...。期望和方差E(X)=1/p,D(X)=(1-p)/p^2。幾何分布超幾何分布在含有M件次品的N件產(chǎn)品中,任取n件,其中恰有X件次品的概率分布稱為超幾何分布。超幾何分布的參數(shù)是N,M,n。概率質(zhì)量函數(shù)P{X=k}=C_M^kC_(N-M)^(n-k)/C_N^n,k=0,1,...,min{n,M}。期望和方差E(X)=nM/N,D(X)=(nM/N)((N-M)/N)((N-n)/(N-1))。定義03常見連續(xù)型隨機變量分布定義在概率論和統(tǒng)計學(xué)中,均勻分布也叫矩形分布,它是對稱概率分布,在相同長度間隔的分布概率是等可能的。性質(zhì)均勻分布由兩個參數(shù)a和b定義,它們是數(shù)軸上的最小值和最大值,通常縮寫為U(a,b)。應(yīng)用均勻分布在自然情況下極為罕見,同樣來由的是指數(shù)分布,像身高、體重、成績分?jǐn)?shù)、考試分?jǐn)?shù)在總體上都服從或近似服從均勻分布。010203均勻分布010203定義指數(shù)分布(也稱為負指數(shù)分布)是描述泊松過程中的事件之間的時間的概率分布,即事件以恒定平均速率連續(xù)且獨立地發(fā)生的過程。性質(zhì)指數(shù)函數(shù)的一個重要特征是無記憶性(MemorylessProperty,又稱遺失記憶性)。這表示如果一個隨機變量呈指數(shù)分布,當(dāng)s,t>0時有P(T>t+s|T>t)=P(T>s)。應(yīng)用在排隊論中,一個顧客接受服務(wù)的時間長短用指數(shù)分布來近似。電話交換臺收到的呼叫、來到某公共汽車站的乘客、某放射性元素發(fā)射出的粒子、顯微鏡下某區(qū)域中的白血球等等,以單位時間內(nèi)按泊松分布的數(shù)目到達。指數(shù)分布定義正態(tài)分布(Normaldistribution),也稱“常態(tài)分布”,又名高斯分布(Gaussiandistribution),最早由A.棣莫弗在求二項分布的漸近公式中得到。C.F.高斯在研究測量誤差時從另一個角度導(dǎo)出了它。P.S.拉普拉斯和高斯研究了它的性質(zhì)。是一個在數(shù)學(xué)、物理及工程等領(lǐng)域都非常重要的概率分布,在統(tǒng)計學(xué)的許多方面有著重大的影響力。要點一要點二應(yīng)用正態(tài)分布在醫(yī)學(xué)的參考值范圍確定、醫(yī)學(xué)數(shù)據(jù)處理、醫(yī)學(xué)實驗設(shè)計、醫(yī)學(xué)研究和醫(yī)學(xué)論文撰寫中,均有著廣泛的應(yīng)用。正態(tài)分布對數(shù)正態(tài)分布性質(zhì)對于X是對數(shù)正態(tài)分布的隨機變量,均值M(X)和方差D(X)通過公式計算得到。定義如果Y是正態(tài)分布的隨機變量,則exp(Y)為對數(shù)正態(tài)分布;同樣,如果Y是對數(shù)正態(tài)分布,則ln(Y)為正態(tài)分布。如果一個變量可以看作是許多很小獨立因子的乘積,則這個變量可以看作是對數(shù)正態(tài)分布。一個典型的例子是股票投資的長期收益率,它可以看作是每天收益率的乘積。應(yīng)用對數(shù)正態(tài)分布可用于描述股票收益率的分布情況。從長期來看,股票市場的收益率的分布也可以看作是對數(shù)正態(tài)分布。04隨機變量函數(shù)的分布分布律的確定通過概率質(zhì)量函數(shù)(PMF)確定離散型隨機變量取各個值的概率。期望和方差的計算利用分布律計算離散型隨機變量的期望和方差,衡量隨機變量的平均水平和波動程度。常見離散分布了解并掌握常見的離散分布,如二項分布、泊松分布等,以及它們的性質(zhì)和應(yīng)用場景。離散型隨機變量函數(shù)的分布030201概率密度函數(shù)的確定通過概率密度函數(shù)(PDF)描述連續(xù)型隨機變量的分布情況,反映隨機變量取值的概率大小。分布函數(shù)的性質(zhì)了解分布函數(shù)的性質(zhì),如單調(diào)不減、右連續(xù)等,以及它與概率密度函數(shù)的關(guān)系。常見連續(xù)分布熟悉常見的連續(xù)分布,如正態(tài)分布、指數(shù)分布等,掌握它們的性質(zhì)和應(yīng)用場景。連續(xù)型隨機變量函數(shù)的分布理解混合型隨機變量的定義,即既包含離散部分又包含連續(xù)部分的隨機變量。混合型的定義掌握確定混合型隨機變量分布函數(shù)的方法,通常需要考慮離散部分和連續(xù)部分的概率加權(quán)。分布函數(shù)的確定學(xué)會計算混合型隨機變量的期望和方差,以便更好地描述隨機變量的統(tǒng)計特性。期望和方差的計算010203混合型隨機變量函數(shù)的分布05多維隨機變量及其分布多維隨機變量定義與性質(zhì)定義多維隨機變量是指取值在多維空間中的隨機變量,通常表示為$X=(X_1,X_2,...,X_n)$,其中$X_i$是一維隨機變量。性質(zhì)多維隨機變量具有一些基本性質(zhì),如獨立性、相關(guān)性、協(xié)方差矩陣等。這些性質(zhì)對于描述多維隨機變量的統(tǒng)計特性和進行概率計算具有重要意義。定義二維離散型隨機變量是指取值在二維平面上的離散點的隨機變量,用$(X,Y)$表示。其聯(lián)合分布律描述了$X$和$Y$同時取各個值的概率分布。聯(lián)合分布律的表示二維離散型隨機變量的聯(lián)合分布律可以用一個二維表格來表示,表格中的每個元素表示$X$和$Y$取對應(yīng)值的概率。二維離散型隨機變量及其聯(lián)合分布律VS二維連續(xù)型隨機變量是指取值在二維平面上的連續(xù)區(qū)域的隨機變量,用$(X,Y)$表示。其聯(lián)合概率密度函數(shù)描述了$(X,Y)$落在某個區(qū)域內(nèi)的概率分布。聯(lián)合概率密度函數(shù)的性質(zhì)聯(lián)合概率密度函數(shù)具有非負性、規(guī)范性(全空間積分為1)以及可加性等基本性質(zhì)。通過聯(lián)合概率密度函數(shù),可以計算$(X,Y)$落在任意區(qū)域內(nèi)的概率。定義二維連續(xù)型隨機變量及其聯(lián)合概率密度函數(shù)對于二維隨機變量$(X,Y)$,其邊緣分布是指其中一個隨機變量的概率分布,即$X$或$Y$的分布。邊緣分布可以通過對聯(lián)合分布律或聯(lián)合概率密度函數(shù)進行求和或積分得到。條件分布是指在給定另一個隨機變量取值的條件下,一個隨機變量的概率分布。對于二維離散型隨機變量,條件分布律可以通過聯(lián)合分布律和邊緣分布律計算得到;對于二維連續(xù)型隨機變量,條件概率密度函數(shù)可以通過聯(lián)合概率密度函數(shù)和邊緣概率密度函數(shù)計算得到。邊緣分布條件分布邊緣分布與條件分布06隨機變量的數(shù)字特征與極限定理數(shù)學(xué)期望描述隨機變量取值的“平均值”,反映隨機變量取值的“中心位置”。方差描述隨機變量取值與其數(shù)學(xué)期望的偏離程度,反映隨機
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年銀川年貨運從業(yè)資格證考試模擬
- 機械租賃合同(2篇)
- 服務(wù)支付協(xié)議書(2篇)
- 村委與物業(yè)合同(2篇)
- 2025年山西國際商務(wù)職業(yè)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 2025年四川中醫(yī)藥高等專科學(xué)校高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025年北京培黎職業(yè)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025至2031年中國魔力不漏雙柄帶蓋喝水杯行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國電動病床行業(yè)投資前景及策略咨詢研究報告
- 床不僅是睡覺的地方-探訪健康生活方式的新篇章
- 【人教版化學(xué)】必修1 知識點默寫小紙條(答案背誦版)
- 江蘇省無錫市2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題(原卷版)
- 《奧特萊斯業(yè)態(tài)淺析》課件
- 老年癡呆癥患者生活陪護協(xié)議
- 2024年-急診氣道管理共識課件
- 小學(xué)語文中段整本書閱讀的指導(dǎo)策略研究 中期報告
- 浙教版2023-2024學(xué)年數(shù)學(xué)八年級上冊期末復(fù)習(xí)卷(含答案)
- 運動訓(xùn)練與康復(fù)治療培訓(xùn)資料
- 小班繪本教學(xué)《藏在哪里了》課件
- 老師呀請你別生氣教學(xué)反思
評論
0/150
提交評論