


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
基于分形--小波的低速軸承磨損故障物理特征研究的中期報告Abstract:Thisisamid-termreportonthephysicalcharacteristicsoflow-speedbearingwearfaultsbasedonfractalwaveletanalysis.Takingthelow-speedbearingastheresearchobject,firstly,weanalyzedthewearfaultcharacteristicsoflow-speedbearings,andthenconstructedwaveletreconstructionmodelsfordifferentdegradationstagesofthebearing.Thereconstructedwaveletcoefficientswerethenusedtocalculatethefractaldimensionofthesignals,andthefractalcharacteristicsofthesignalsatdifferentdegradationstageswereanalyzed.Basedontheaboveanalysis,wefoundthatthefractaldimensionoftheoriginalsignalincreasedgraduallywiththedegradationofthebearing,andthatthefractalcharacteristicsofthereconstructedsignalsweresimilartothoseoftheoriginalsignals.Inaddition,wealsofoundthatthefractaldimensionofthehigh-frequencycomponentofthesignalswasmoresensitivetothewearfaultthanthatofthelow-frequencycomponent.Theresultsofthisstudyprovideatheoreticalbasisfortheearlywarninganddiagnosisoflow-speedbearingwearfaultsbasedonfractalwaveletanalysis.Theyalsoprovideareferenceforthedevelopmentofintelligentfaultdiagnosissystemsforbearings.Introduction:Thelow-speedbearingisanimportantcomponentinrotatingmachinery,anditsperformancedirectlyaffectstheefficiencyandreliabilityofthemachinery.Intheactualoperationprocess,thelow-speedbearingiseasilydamagedduetovariousfactorssuchasload,vibration,andlubrication,resultinginfaultssuchaswearandtear.Earlywarninganddiagnosisofthesefaultscaneffectivelyreducethemaintenancecostoftheequipmentandimprovethesafetyandreliabilityofthemachinery.Thefractalwaveletanalysismethodisanewmethodforsignalanalysis,whichhasbeenwidelyusedintheanalysisanddiagnosisoffaultsignalsinmachinery.Fractaldimensionisanimportantcharacteristicparameterofsignalsinfractaltheory,whichcanreflectthecomplexityofsignals.Wavelettransformisamulti-scaleanalysismethod,whichcandecomposesignalsintodifferentfrequencycomponentsandanalyzetheircharacteristics.Inthisstudy,takingthelow-speedbearingastheresearchobject,weanalyzedthewearfaultcharacteristicsoflow-speedbearingsandconstructedwaveletreconstructionmodelsfordifferentdegradationstagesofthebearing.Thereconstructedwaveletcoefficientswerethenusedtocalculateandanalyzethefractaldimensionofthesignalsatdifferentdegradationstages,providingatheoreticalbasisforearlywarninganddiagnosisofbearingwearfaults.Methodology:Experimentalsetup:Theexperimentalsetupincludesalow-speedbearing,amotor,aloadcell,andadataacquisitionsystem.Themotordrivesthelow-speedbearingtorotate,andtheloadcellisusedtomeasuretheloadofthebearing.Thedataacquisitionsystemcollectsthevibrationsignalsofthebearingduringtheoperationprocess.Signalprocessing:Thecollectedvibrationsignalwasprocessedbywavelettransform.Thedecompositionlevelwassettofive,andthedb4waveletwasusedasthemotherwavelet.Thewaveletreconstructionmodelwasconstructedfortheoriginalsignalandthesignalsatdifferentdegradationstagesofthebearing.Thereconstructedwaveletcoefficientswerethenusedtocalculatethefractaldimensionofthesignalsusingthebox-countingmethod.ResultsandDiscussion:Thewearfaultcharacteristicsofthelow-speedbearingwereanalyzed,andthewaveletreconstructionmodelswereconstructedfortheoriginalsignalandthesignalsatdifferentdegradationstagesofthebearing.Thereconstructedwaveletcoefficientswereusedtocalculatethefractaldimensionofthesignals,andthefractalcharacteristicsofthesignalsatdifferentdegradationstageswereanalyzed.Theresultsshowedthatthefractaldimensionoftheoriginalsignalincreasedgraduallywiththedegradationofthebearing,indicatingthatthesignalbecamemorecomplex.Thefractalcharacteristicsofthereconstructedsignalsweresimilartothoseoftheoriginalsignals,indicatingthatthewaveletreconstructionmodelwaseffective.Inaddition,wefoundthatthefractaldimensionofthehigh-frequencycomponentofthesignalswasmoresensitivetothewearfaultthanthatofthelow-frequencycomponent.Thisisbecausethehigh-frequencycomponentcontainsmoredetailedinformationofthesignal,whichisaffectedmorebythewearfault.Conclusion:Inthisstudy,thephysicalcharacteristicsoflow-speedbearingwearfaultsbasedonfractalwaveletanalysiswerestudied.Thewearfaultcharacteristicsofthelow-speedbearingwereanalyzed,andthewaveletreconstructionmodelswereconstructedfortheoriginalsignalandthesignalsatdifferentdegradationstagesofthebearing.Thefractaldimensionofthesignalswascalculated,andthefractalcharacteristicsofthesignalsatdifferentdegradationstageswereanalyzed.Theresultsshowedthatthefractaldimensionoftheoriginalsignalincreasedgraduallywiththedegradationofthebearing,andthatthefractalcharacteristicsofthereconstructedsignalsweresimilartothoseoftheoriginalsignals.Inaddition,thefractaldimensionofthehigh-frequencycomponentofthesignalswasmoresensitivetothewearfaultt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商標掛靠企業(yè)合同范本
- 合資協(xié)議合同范本格式
- 加工木床廠轉讓合同范例
- 公司要簽合同合同范本
- 鹵菜招學員合同范例
- 商標許可合同范例
- 司機物流運輸合同范本
- 企業(yè)財務主管述職報告
- 商品房合同按揭合同范本
- 廠區(qū)裝監(jiān)控合同范例
- 八大員-勞務員模考試題與答案
- 2024危重癥患兒管飼喂養(yǎng)護理-中華護理學會團體標準課件
- 《《中央企業(yè)合規(guī)管理辦法》解讀》課件
- 脫硫自動化控制-洞察分析
- 醫(yī)務人員醫(yī)德醫(yī)風培訓
- 人教版初中歷史八上-第2課 第二次鴉片戰(zhàn)爭
- 2025年中考語文專題復習:寫作技巧 課件
- 60歲以上務工免責協(xié)議書
- 2024年社區(qū)工作者考試必考1000題【歷年真題】
- 黑龍江省哈爾濱市2024年高三一模試題(數(shù)學試題理)試題
- 媒介文化十二講課件
評論
0/150
提交評論