版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、選擇題(10×3=30分)1.(2017?寧德)如圖,在△ABC中,AB=AC,點(diǎn)D,E分別在邊BC和AC上,若AD=AE,則下列結(jié)論錯(cuò)誤的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AEDC.∠CDE=∠BAD D.∠AED=2∠ECD【分析】由三角形的外角性質(zhì)、等腰三角形的性質(zhì)得出選項(xiàng)A、B、C正確,選項(xiàng)D錯(cuò)誤,即可得出答案.2.(2018?安徽)?ABCD中,E,F(xiàn)的對(duì)角線BD上不同的兩點(diǎn).下列條件中,不能得出四邊形AECF一定為平行四邊形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF【分析】連接AC與BD相交于O,根據(jù)平行四邊形的對(duì)角線互相平分可得OA=OC,OB=OD,再根據(jù)對(duì)角線互相平分的四邊形是平行四邊形,只要證明得到OE=OF即可,然后根據(jù)各選項(xiàng)的條件分析判斷即可得解.3.(2018?揚(yáng)州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,則下列結(jié)論一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根據(jù)同角的余角相等可得出∠BCD=∠A,根據(jù)角平分線的定義可得出∠ACE=∠DCE,再結(jié)合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角對(duì)等邊即可得出BC=BE,此題得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故選:C.學(xué)科&網(wǎng)4.(2018?宜昌)尺規(guī)作圖:經(jīng)過已知直線外一點(diǎn)作這條直線的垂線,下列作圖中正確的是()A. B. C. D.【分析】根據(jù)過直線外一點(diǎn)向直線作垂線即可.5.(2018?東營(yíng))如圖,在四邊形ABCD中,E是BC邊的中點(diǎn),連接DE并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)F,AB=BF.添加一個(gè)條件使四邊形ABCD是平行四邊形,你認(rèn)為下面四個(gè)條件中可選擇的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF【分析】正確選項(xiàng)是D.想辦法證明CD=AB,CD∥AB即可解決問題;6.(2018?臺(tái)灣)如圖,銳角三角形ABC中,BC>AB>AC,甲、乙兩人想找一點(diǎn)P,使得∠BPC與∠A互補(bǔ),其作法分別如下:(甲)以A為圓心,AC長(zhǎng)為半徑畫弧交AB于P點(diǎn),則P即為所求;(乙)作過B點(diǎn)且與AB垂直的直線l,作過C點(diǎn)且與AC垂直的直線,交l于P點(diǎn),則P即為所求對(duì)于甲、乙兩人的作法,下列敘述何者正確?()A.兩人皆正確 B.兩人皆錯(cuò)誤C.甲正確,乙錯(cuò)誤 D.甲錯(cuò)誤,乙正確【分析】甲:根據(jù)作圖可得AC=AP,利用等邊對(duì)等角得:∠APC=∠ACP,由平角的定義可知:∠BPC+∠APC=180°,根據(jù)等量代換可作判斷;乙:根據(jù)四邊形的內(nèi)角和可得:∠BPC+∠A=180°.【解答】解:甲:如圖1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲錯(cuò)誤;乙:如圖2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正確,故選:D.7.(2018?眉山)如圖,在?ABCD中,CD=2AD,BE⊥AD于點(diǎn)E,F(xiàn)為DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個(gè)數(shù)共有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)【分析】如圖延長(zhǎng)EF交BC的延長(zhǎng)線于G,取AB的中點(diǎn)H連接FH.想辦法證明EF=FG,BE⊥BG,四邊形BCFH是菱形即可解決問題;【解答】解:如圖延長(zhǎng)EF交BC的延長(zhǎng)線于G,取AB的中點(diǎn)H連接FH.∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正確,∵S△DFE=S△CFG,∴S四邊形DEBC=S△EBG=2S△BEF,故③正確,8.(2017呼和浩特)如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,E,F(xiàn)為BD所在直線上的兩點(diǎn),若AE=,∠EAF=135°,則下列結(jié)論正確的是()A.DE=1 B.tan∠AFO=C.AF= D.四邊形AFCE的面積為【分析】根據(jù)正方形的性質(zhì)求出AO的長(zhǎng),用勾股定理求出EO的長(zhǎng),然后由∠MAN=135°及∠BAD=90°可以得到相似三角形,根據(jù)相似三角形的性質(zhì)求出BF的長(zhǎng),再一一計(jì)算即可判斷.在Rt△AOF中,AF===,故C正確,tan∠AFO===,故B錯(cuò)誤,∴S四邊形AECF=?AC?EF=××=,故D錯(cuò)誤,故選C.學(xué)科&網(wǎng)9.(2017?玉林)如圖,AB是⊙O的直徑,AC,BC分別與⊙O相交于點(diǎn)D,E,連接DE,現(xiàn)給出兩個(gè)命題:①若AC=AB,則DE=CE;②若∠C=45°,記△CDE的面積為S1,四邊形DABE的面積為S2,則S1=S2,那么()A.①是真命題②是假命題 B.①是假命題②是真命題C.①是假命題②是假命題 D.①是真命題②是真命題【分析】根據(jù)等腰三角形的性質(zhì)得到∠C=∠B,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠B=∠CDE,根據(jù)等腰三角形的判定判斷①;根據(jù)相似三角形的面積比等于相似比的平方判斷②.∴AC=CE,∵四邊形ABED內(nèi)接于⊙O,∴∠B=∠CDE,∠CAB=∠CED,∴△CDE∽△CBA,∴=()2=,∴S1=S2,②正確,故選:D.10.(2017山東濱州)如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN與∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為()A.4 B.3 C.2 D.1【分析】如圖作PE⊥OA于E,PF⊥OB于F.只要證明△POE≌△POF,△PEM≌△PFN,即可一一判斷.在△POE和△POF中,,∴△POE≌△POF,∴OE=OF,二、填空題(6×4=24分).11.(2018?金華)如圖,△ABC的兩條高AD,BE相交于點(diǎn)F,請(qǐng)?zhí)砑右粋€(gè)條件,使得△ADC≌△BEC(不添加其他字母及輔助線),你添加的條件是.【分析】添加AC=BC,根據(jù)三角形高的定義可得∠ADC=∠BEC=90°,再證明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的兩條高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案為:AC=BC.12.(2017貴州)如圖,點(diǎn)B、F、C、E在一條直線上,已知FB=CE,AC∥DF,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件使得△ABC≌△DEF.【分析】根據(jù)全等三角形的判定定理填空.13.(2017齊齊哈爾)矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件,使其成為正方形(只填一個(gè)即可)【分析】此題是一道開放型的題目答案不唯一,也可以添加AC⊥BD等.【解答】解:添加條件:AB=BC,理由如下:∵四邊形ABCD是矩形,AB=BC,∴四邊形ABCD是正方形,故答案為:AB=BC(答案不唯一).14.(2018?湖州)在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).以頂點(diǎn)都是格點(diǎn)的正方形ABCD的邊為斜邊,向內(nèi)作四個(gè)全等的直角三角形,使四個(gè)直角頂點(diǎn)E,F(xiàn),G,H都是格點(diǎn),且四邊形EFGH為正方形,我們把這樣的圖形稱為格點(diǎn)弦圖.例如,在如圖1所示的格點(diǎn)弦圖中,正方形ABCD的邊長(zhǎng)為,此時(shí)正方形EFGH的而積為5.問:當(dāng)格點(diǎn)弦圖中的正方形ABCD的邊長(zhǎng)為時(shí),正方形EFGH的面積的所有可能值是(不包括5).【分析】當(dāng)DG=,CG=2時(shí),滿足DG2+CG2=CD2,此時(shí)HG=,可得正方形EFGH的面積為13.當(dāng)DG=8,CG=1時(shí),滿足DG2+CG2=CD2,此時(shí)HG=7,可得正方形EFGH的面積為49.當(dāng)DG=7,CG=4時(shí),滿足DG2+CG2=CD2,此時(shí)HG=3,可得正方形EFGH的面積為9.15.(2018?香坊區(qū))已知邊長(zhǎng)為5的菱形ABCD中,對(duì)角線AC長(zhǎng)為6,點(diǎn)E在對(duì)角線BD上且tan∠EAC=,則BE的長(zhǎng)為.【分析】根據(jù)菱形的性質(zhì)和分兩種情況進(jìn)行解答即可.【解答】解:當(dāng)點(diǎn)E在對(duì)角線交點(diǎn)左側(cè)時(shí),如圖1所示:16.(2017四川南充)如圖,正方形ABCD和正方形CEFG邊長(zhǎng)分別為a和b,正方形CEFG繞點(diǎn)C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2,其中正確結(jié)論是(填序號(hào))【分析】由四邊形ABCD與四邊形EFGC都為正方形,得到四條邊相等,四個(gè)角為直角,利用SAS得到三角形BCE與三角形DCG全等,利用全等三角形對(duì)應(yīng)邊相等即可得到BE=DG,利用全等三角形對(duì)應(yīng)角相等得到∠1=∠2,利用等角的余角相等及直角的定義得到∠BOD為直角,利用勾股定理求出所求式子的值即可.∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOC=90°,∴BE⊥DG;故①②正確;連接BD,EG,如圖所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=b2,則BG2+DE2=DO2+BO2+EO2+OG2=2a2+b2,故③正確.故答案為:①②③.學(xué)科&網(wǎng)三、解答題(共46分).17.(2018?徐州)已知四邊形ABCD的對(duì)角線AC與BD交于點(diǎn)O,給出下列四個(gè)論斷:①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.請(qǐng)你從中選擇兩個(gè)論斷作為條件,以“四邊形ABCD為平行四邊形”作為結(jié)論,完成下列各題:①構(gòu)造一個(gè)真命題,畫圖并給出證明;②構(gòu)造一個(gè)假命題,舉反例加以說明.【分析】如果①②結(jié)合,那么這些線段所在的兩個(gè)三角形是SSA,不一定全等,那么就不能得到相等的對(duì)邊平行;如果②③結(jié)合,和①②結(jié)合的情況相同;如果①④結(jié)合,由對(duì)邊平行可得到兩對(duì)內(nèi)錯(cuò)角相等,那么AD,BC所在的三角形全等,也得到平行的對(duì)邊也相等,那么是平行四邊形;最易舉出反例的是②④,它有可能是等腰梯形.18.(2018?濱州)已知,在△ABC中,∠A=90°,AB=AC,點(diǎn)D為BC的中點(diǎn).(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DE⊥DF,求證:BE=AF;(2)若點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DE⊥DF,那么BE=AF嗎?請(qǐng)利用圖②說明理由.【分析】(1)連接AD,根據(jù)等腰三角形的性質(zhì)可得出AD=BD、∠EBD=∠FAD,根據(jù)同角的余角相等可得出∠BDE=∠ADF,由此即可證出△BDE≌△ADF(ASA),再根據(jù)全等三角形的性質(zhì)即可證出BE=AF;(2)連接AD,根據(jù)等腰三角形的性質(zhì)及等角的補(bǔ)角相等可得出∠EBD=∠FAD、BD=AD,根據(jù)同角的余角相等可得出∠BDE=∠ADF,由此即可證出△EDB≌△FDA(ASA),再根據(jù)全等三角形的性質(zhì)即可得出BE=AF.(2)BE=AF,證明如下:連接AD,如圖②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.19.(2018?無錫)如圖,平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)為(6,4).(1)請(qǐng)用直尺(不帶刻度)和圓規(guī)作一條直線AC,它與x軸和y軸的正半軸分別交于點(diǎn)A和點(diǎn)C,且使∠ABC=90°,△ABC與△AOC的面積相等.(作圖不必寫作法,但要保留作圖痕跡.)(2)問:(1)中這樣的直線AC是否唯一?若唯一,請(qǐng)說明理由;若不唯一,請(qǐng)?jiān)趫D中畫出所有這樣的直線AC,并寫出與之對(duì)應(yīng)的函數(shù)表達(dá)式.【分析】(1)①作線段OB的垂直平分線AC,滿足條件,②作矩形OA′BC′,直線A′C′,滿足條件;(2)分兩種情形分別求解即可解決問題;【解答】(1)解:如圖△ABC即為所求;20.(2017齊齊哈爾)如圖,在平面直角坐標(biāo)系中,把矩形OABC沿對(duì)角線AC所在直線折疊,點(diǎn)B落在點(diǎn)D處,DC與y軸相交于點(diǎn)E,矩形OABC的邊OC,OA的長(zhǎng)是關(guān)于x的一元二次方程x2﹣12x+32=0的兩個(gè)根,且OA>OC.(1)求線段OA,OC的長(zhǎng);(2)求證:△ADE≌△COE,并求出線段OE的長(zhǎng);(3)直接寫出點(diǎn)D的坐標(biāo);(4)若F是直線AC上一個(gè)動(dòng)點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使以點(diǎn)E,C,P,F(xiàn)為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.【分析】(1)解方程即可得到結(jié)論;(2)由四邊形ABCO是矩形,得到AB=OC,∠ABC=∠AOC=90°,根據(jù)折疊的性質(zhì)得到AD=AB,∠ADE=∠ABC=90°,根據(jù)全等三角形的判定得到△ADE≌△COE;根據(jù)勾股定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 南華經(jīng)課件教學(xué)課件
- 玉溪師范學(xué)院《科學(xué)社會(huì)主義》2021-2022學(xué)年第一學(xué)期期末試卷
- 2024年襪子項(xiàng)目評(píng)價(jià)分析報(bào)告
- 2023年濾板項(xiàng)目評(píng)價(jià)分析報(bào)告
- 2024年裝在進(jìn)口飛機(jī)上的國(guó)產(chǎn)零備件和材料項(xiàng)目綜合評(píng)估報(bào)告
- 2019湘美版 高中美術(shù) 選擇性必修1 繪畫《第二單元 繪畫中的色彩》大單元整體教學(xué)設(shè)計(jì)2020課標(biāo)
- 2024屆河北省棗強(qiáng)中學(xué)高三2月11日專項(xiàng)練習(xí)數(shù)學(xué)試題
- 2024屆河北省滄州鹽山中學(xué)高三第二學(xué)期聯(lián)合教學(xué)質(zhì)量調(diào)研數(shù)學(xué)試題試卷
- 2024屆貴州省六盤水市盤縣第四中學(xué)招生全國(guó)統(tǒng)一考試高考模擬調(diào)研卷數(shù)學(xué)試題(二)
- 柳州市2025屆高三第一次模擬考試(一模)歷史試卷
- 2024廣西專業(yè)技術(shù)人員繼續(xù)教育公需科目參考答案
- 臺(tái)球廳運(yùn)營(yíng)方案策劃(2篇)
- GB/T 43933-2024金屬礦土地復(fù)墾與生態(tài)修復(fù)技術(shù)規(guī)范
- 新一代信息技術(shù)基礎(chǔ)智慧樹知到期末考試答案章節(jié)答案2024年哈爾濱師范大學(xué)
- 工程變更通知單ECN模板-20220213
- 2024-2030年中國(guó)測(cè)試分選機(jī)行業(yè)市場(chǎng)發(fā)展分析及競(jìng)爭(zhēng)格局與投資發(fā)展研究報(bào)告
- 學(xué)校廚房設(shè)備投標(biāo)方案(技術(shù)方案)
- 化工和危險(xiǎn)化學(xué)品生產(chǎn)經(jīng)營(yíng)單位二十條重大隱患判定標(biāo)準(zhǔn)釋義(中化協(xié))
- 課本劇哈姆雷特劇本
- 黑變病的護(hù)理查房
- 跨國(guó)化妝品企業(yè)在中國(guó)本土化戰(zhàn)略研究分析-以雅詩(shī)蘭黛公司為例 工商管理專業(yè)
評(píng)論
0/150
提交評(píng)論