版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
新疆伊西哈拉鎮(zhèn)中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.,,這三個數(shù)之間的大小順序是()A. B.C. D.2.函數(shù)是A.周期為的奇函數(shù) B.周期為的奇函數(shù)C.周期為的偶函數(shù) D.周期為的偶函數(shù)3.已知函數(shù),則下列結(jié)論正確的是()A.B.的值域為C.在上單調(diào)遞減D.的圖象關(guān)于點對稱4.下列關(guān)系中,正確的是()A. B.C. D.5.已知定義在R上偶函數(shù)fx滿足下列條件:①fx是周期為2的周期函數(shù);②當(dāng)x∈0,1時,fx=A12 B.1C.-146.是邊長為1的等邊三角形,點分別是邊的中點,連接并延長到點,使得,則的值為()A. B.C. D.7.中,設(shè),,為中點,則A. B.C. D.8.已知方程的兩根分別為、,且、,則A. B.或C.或 D.9.已知,,則的值約為(精確到)()A. B.C. D.10.若函數(shù)存在兩個零點,且一個為正數(shù),另一個為負(fù)數(shù),則的取值范圍為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,且,寫出一個滿足條件的的值___________12.已知是球上的點,,,,則球的表面積等于________________13.已知圓心為,且被直線截得的弦長為,則圓的方程為__________14.設(shè),,則的取值范圍是______.15.若函數(shù)在區(qū)間上有兩個零點,則實數(shù)的取值范圍是_______.16.已知函數(shù)是R上的減函數(shù),則實數(shù)a的取值范圍為_______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(,且).(1)求函數(shù)的定義域;(2)是否存在實數(shù)a,使函數(shù)在區(qū)間上單調(diào)遞減,并且最大值為1?若存在,求出a的值;若不存在,請說明理由.18.已知函數(shù)(且)的圖象過點(1)求的值.(2)若.(i)求的定義域并判斷其奇偶性;(ii)求的單調(diào)遞增區(qū)間.19.已知函數(shù)是R上的奇函數(shù).(1)求a的值,并判斷的單調(diào)性;(2)若存在,使不等式成立,求實數(shù)b的取值范圍.20.如圖,某公園摩天輪的半徑為40,圓心O距地面的高度為50,摩天輪做勻速轉(zhuǎn)動,每3轉(zhuǎn)一圈,摩天輪上的點P的起始位置在距地面最近處.(1)已知在時點P距離地面的高度為,求時,點P距離地面的高度;(2)當(dāng)離地面以上時,可以看到公園的全貌,求轉(zhuǎn)一圈中在點P處有多少時間可以看到公園的全貌.21.函數(shù)的部分圖象如圖所示.(1)求、及圖中的值;(2)設(shè),求函數(shù)在區(qū)間上的最大值和最小值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)比較即可【詳解】解:因為在上為減函數(shù),且,所以,因為在上為增函數(shù),且,所以,因為在上為增函數(shù),且,所以,綜上,,故選:C2、A【解析】對于函數(shù)y=sin,T=4π,且sin(-)=-sin.故選A3、C【解析】利用分段函數(shù)化簡函數(shù)解析式,再利用函數(shù)圖像和性質(zhì),從而得出結(jié)論.【詳解】故函數(shù)的周期為,即,故排除A,顯然函數(shù)的值域為,故排除B,在上,函數(shù)為單調(diào)遞減,故C正確,根據(jù)函數(shù)的圖像特征,可知圖像不關(guān)于點對稱,故排除D.故選:C.【點睛】本題解題時主要利用分段函數(shù)化簡函數(shù)的解析式,在化簡的過程中注意函數(shù)的定義域,以及充分利用函數(shù)的圖像和性質(zhì)解題.4、C【解析】根據(jù)自然數(shù)集、正整數(shù)集、整數(shù)集以及有理數(shù)集的含義判斷數(shù)與集合的關(guān)系.【詳解】對于A,,所以A錯誤;對于B,不是整數(shù),所以,所以B錯誤;對于C,,所以C正確;對于D,因為不含任何元素,則,所以D錯誤.故選:C.5、B【解析】根據(jù)函數(shù)的周期為2和函數(shù)fx是定義在R上的偶函數(shù),可知flog【詳解】因為fx是周期為2所以flog又函數(shù)fx定義在R上的偶函數(shù),所以又當(dāng)x∈0,1時,fx=所以flog23故選:B.6、B【解析】設(shè),,∴,,,∴.【考點】向量數(shù)量積【名師點睛】研究向量的數(shù)量積問題,一般有兩個思路,一是建立直角坐標(biāo)系,利用坐標(biāo)研究向量數(shù)量積;二是利用一組基底表示所有向量,兩種實質(zhì)相同,坐標(biāo)法更易理解和化簡.平面向量的坐標(biāo)運(yùn)算的引入為向量提供了新的語言——“坐標(biāo)語言”,實質(zhì)是將“形”化為“數(shù)”.向量的坐標(biāo)運(yùn)算,使得向量的線性運(yùn)算都可用坐標(biāo)來進(jìn)行,實現(xiàn)了向量運(yùn)算完全代數(shù)化,將數(shù)與形緊密結(jié)合起來7、C【解析】分析:直接利用向量的三角形法則求.詳解:由題得,故答案為C.點睛:(1)本題主要考查向量的加法和減法法則,意在考查學(xué)生對這些基礎(chǔ)知識的掌握水平和轉(zhuǎn)化能力.(2)向量的加法法則:,向量的減法法則:.8、D【解析】將韋達(dá)定理的形式代入兩角和差正切公式可求得,根據(jù)韋達(dá)定理可判斷出兩角的正切值均小于零,從而可得,進(jìn)而求得,結(jié)合正切值求得結(jié)果.【詳解】由韋達(dá)定理可知:,又,,本題正確選項:【點睛】本題考查根據(jù)三角函數(shù)值求角的問題,涉及到兩角和差正切公式的應(yīng)用,易錯點是忽略了兩個角所處的范圍,從而造成增根出現(xiàn).9、B【解析】利用對數(shù)的運(yùn)算性質(zhì)將化為和的形式,代入和的值即可得解.【詳解】.故選:B10、C【解析】根據(jù)題意畫出函數(shù)圖像,由圖像即可分析出由一個正零點,一個負(fù)零點a的范圍【詳解】如圖,若存在兩個零點,且一個為正數(shù),另一個為負(fù)數(shù),則,故選【點睛】本題考查了絕對值函數(shù)及零點的簡單應(yīng)用,屬于基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、π(答案不唯一)【解析】利用,可得,又,確定可得結(jié)果.【詳解】因為,所以,,則,或,,又,故滿足要求故答案為:π(答案不唯一)12、【解析】由已知S,A,B,C是球O表面上的點,所以,又,,所以四面體的外接球半徑等于以長寬高分別以SA,AB,BC三邊長為長方體的外接球的半徑,因為,,所以,所以球的表面積點睛:本題考查了球內(nèi)接多面體,球的表面積公式,屬于中檔題.其中根據(jù)已知條件求球的直徑(半徑)是解答本題的關(guān)鍵13、【解析】由題意可得弦心距d=,故半徑r=5,故圓C的方程為x2+(y+2)2=25,故答案為x2+(y+2)2=2514、【解析】由已知求得,然后應(yīng)用誘導(dǎo)公式把求值式化為一個角的一個三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)求得范圍【詳解】,,所以,所以,,,,故答案為:15、【解析】由題意根據(jù)數(shù)形結(jié)合,只要,并且對稱軸在之間,,解不等式組即可【詳解】由題意,要使函數(shù)區(qū)間上有兩個零點,只要,即,解得,故答案為【點睛】本題主要考查了二次函數(shù)的性質(zhì),函數(shù)零點的分布,關(guān)鍵是結(jié)合二次函數(shù)圖象等價得到不等式組,常見的形式有考慮端點值處函數(shù)值的符號,對稱軸與所給區(qū)間的關(guān)系,對稱軸處函數(shù)值的符號等,屬于中檔題.16、【解析】由已知結(jié)合分段函數(shù)的性質(zhì)及一次函數(shù)的性質(zhì),列出關(guān)于a的不等式,解不等式組即可得解.【詳解】因為函數(shù)是R上的減函數(shù)所以需滿足,解得,即所以實數(shù)a的取值范圍為故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)對數(shù)型函數(shù)定義的求法簡單計算即可.(2)利用復(fù)合函數(shù)的單調(diào)性的判斷可知,然后依據(jù)題意可得進(jìn)行計算即可.【小問1詳解】由題意可得,即,因為,所以解得.故的定義域為.【小問2詳解】假設(shè)存在實數(shù),使函數(shù)在區(qū)間上單調(diào)遞減,并且最大值為1.設(shè)函數(shù),由,得,所以在區(qū)間上減函數(shù)且恒成立,因為在區(qū)間上單調(diào)遞減,所以且,即.又因為在區(qū)間上的最大值為1,所以,整理得,解得.因為,所以,所以存在實數(shù),使函數(shù)在區(qū)間上單調(diào)遞減,并且最大值為118、(1);(2)(i)定義域為,是偶函數(shù);(ii).【解析】(1)由可求得實數(shù)的值;(2)(i)根據(jù)對數(shù)的真數(shù)大于零可得出關(guān)于實數(shù)的不等式,由此可解得函數(shù)的定義域,然后利用函數(shù)奇偶性的定義可證明函數(shù)為偶函數(shù);(ii)利用復(fù)合函數(shù)法可求得函數(shù)的增區(qū)間.【詳解】(1)由條件知,即,又且,所以;(2).(i)由得,故的定義域為.因為,故是偶函數(shù);(ii),因為函數(shù)單調(diào)遞增,函數(shù)在上單調(diào)遞增,故的單調(diào)遞增區(qū)間為.19、(1),為上的增函數(shù);(2).【解析】(1)由奇函數(shù)的定義即可求解的值,因為,所以由復(fù)合函數(shù)單調(diào)性的判斷法則即可判斷的單調(diào)性;(2)由題意,原問題等價于,令,則,利用二次函數(shù)的性質(zhì)可求得的最小值,從而即可得答案.【小問1詳解】解:∵函數(shù)是R上的奇函數(shù),∴,即對任意恒成立,∴,∵,又在上單調(diào)遞增且,且在單調(diào)遞增,所以為上的增函數(shù);【小問2詳解】解:由已知在內(nèi)有解,即在有解,令,則,因為在上單調(diào)遞減,所以,所以,所以實數(shù)b的取值范圍為.20、(1)70;(2)0.5.【解析】(1)根據(jù)題意,確定的表達(dá)式,代入運(yùn)算即可;(2)要求,即,解不等式即可.【詳解】(1)依題意,,,,由得,所以.因為,所以,又,所以.所以,所以.即時點P距離地面的高度為70m.(2)由(1)知.令,即,從而,∴.∵,∴轉(zhuǎn)一圈中在點P處有0.5min的時間可以看到公園的全貌.【點睛】本題考查了已知三角函數(shù)模型的應(yīng)用問題,解答本題的關(guān)鍵是能根據(jù)題目條件,得出相應(yīng)的函數(shù)模型,作出正確的示意圖,然后再由三角函數(shù)中的相關(guān)知識進(jìn)行求解,解題時要注意綜合利用所學(xué)知識與題中的條件,是中檔題21、(1),,;(2),.【解析】(1)由可得出,結(jié)合可求得的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年膜分離制氮設(shè)備投資申請報告
- 2023年高品質(zhì)研磨碳酸鈣漿料投資申請報告
- 2024年混凝土攪拌機(jī)項目資金申請報告代可行性研究報告
- 第七章 環(huán)境規(guī)劃與管理的政策、法規(guī)、制度、標(biāo)準(zhǔn)和管理體系課件
- 大病救治自查報告
- 生物安全自查報告
- 2024年商鋪轉(zhuǎn)租協(xié)議范本
- 單位資金周轉(zhuǎn)借款協(xié)議范本2024
- 2024年度綜合經(jīng)濟(jì)服務(wù)協(xié)議模板
- 2024年個人借款協(xié)議范本協(xié)議
- 第一章第三節(jié)《氧化還原反應(yīng)》第一課時高一上學(xué)期化學(xué)人教版(2019)必修第一冊
- 高三政治月考試卷講評
- 期中模擬測試卷1(試題)-2024-2025學(xué)年五年級上冊數(shù)學(xué)(福建)
- 江蘇省南通市2023-2024學(xué)年七上期中數(shù)學(xué)試題(解析版)
- 體育大單元教學(xué)計劃(18課時)
- 讓小車運(yùn)動起來說課稿
- 2023-2024學(xué)年北京朝陽區(qū)高三(上)期中數(shù)學(xué)試題和答案
- 工程招投標(biāo)管理與實踐作業(yè)指導(dǎo)書
- ISO 22003-1:2022《食品安全-第 1 部分:食品安全管理體系 審核與認(rèn)證機(jī)構(gòu)要求》中文版(機(jī)翻)
- 2024年消防月主題活動方案啟動及全員消防安全知識培訓(xùn)
- 高職組“智能財稅”賽項國賽賽題2022
評論
0/150
提交評論